Atul C Chaskar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1808290/publications.pdf

Version: 2024-02-01

52 papers 1,620 citations

331670 21 h-index 289244 40 g-index

52 all docs 52 docs citations

times ranked

52

1636 citing authors

#	Article	IF	CITATIONS
1	Function-oriented synthesis of fluorescent chemosensor for selective detection of Al3+ in neat aqueous solution: Paperstrip detection & DNA bioimaging. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113699.	3.9	6
2	Nanotechnology: a promising approach in nerve regeneration. Current Nanoscience, 2022, 18, .	1.2	1
3	Combined experimental and density functional theory studies on novel 9â€(4/3/2â€cyanophenyl)â€9 H â€carbazoleâ€3â€carbonitrile compounds for organic electronics. Journal of Physical Organic Chemistry, 2021, 34, e4207.	1.9	0
4	Carbazole/triphenylamine-cyanobenzimidazole hybrid bipolar host materials for green phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 92, 106090.	2.6	14
5	Novel benzothiadiazine 1,1-dioxide based bipolar host materials for efficient red phosphorescent organic light emitting diodes. Organic Electronics, 2021, 92, 106104.	2.6	4
6	Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. Journal of Fluorescence, 2021, 31, 1241-1250.	2.5	22
7	Carbazole-pyridine pyrroloquinoxaline/benzothiadiazine 1,1-dioxide based bipolar hosts for efficient red PhOLEDs. Organic Electronics, 2021, 96, 106217.	2.6	7
8	Design and Synthesis of Novel Phenothiazineâ€Benzothiadiazineâ€1,1â€dioxide Hybrid Organic Material for OLED Applications. ChemistrySelect, 2021, 6, 11029-11038.	1.5	4
9	Triazolopyridine hybrids as bipolar host materials for green phosphorescent organic light-emitting diodes (OLEDs). Dyes and Pigments, 2019, 160, 301-314.	3.7	25
10	Polyethyleneâ€Glycol―(PEGâ€400) Mediated Environmentally Benign Protocol for the Synthesis of Pyrrolo[1,2â€a]quinoxalines from Benzyl Amines at Room Temperature. ChemistrySelect, 2019, 4, 11362-11366.	1.5	14
11	A highly divergent Pictet-Spengler approach for pyrrolo[1,2-a]quinoxalines from aryl amine using 1,2-dinitrobenzene as an oxidant. Tetrahedron Letters, 2019, 60, 151250.	1.4	10
12	NBS-assisted an efficient conversion of styrenes to \hat{l}_{\pm} -hydroxy ketones in water. Tetrahedron Letters, 2019, 60, 1788-1791.	1.4	3
13	Metal free oxidative C C bond cleavage: Facile and one-pot tandem synthesis of benzothiadiazine-1,1-dioxides. Tetrahedron Letters, 2019, 60, 1526-1529.	1.4	9
14	Highly adequate oxidative esterification of \hat{l}_{\pm} -carbonyl aldehydes with alkyl halides in TBAI/TBHP mediated system. Synthetic Communications, 2019, 49, 1325-1333.	2.1	1
15	Transition metal-catalyzed C H functionalization of arylacetic acids for the synthesis of benzothiadiazine 1,1-dioxides. Tetrahedron Letters, 2019, 60, 891-894.	1.4	13
16	Transition Metalâ€Free sp ³ C–H Functionalization of Arylacetic Acids for the Synthesis of 1,3,5â€Triazines. European Journal of Organic Chemistry, 2018, 2018, 2098-2102.	2.4	12
17	Tandem Protocol for the Synthesis of 3â€Acyl Benzothiadiazine 1,1â€Dioxides. ChemistrySelect, 2018, 3, 277-283.	1.5	11
18	Copper-Catalyzed Simultaneous Activation of C–H and N–H Bonds: Three-Component One-Pot Cascade Synthesis of MultiÂsubstituted Imidazoles. Synthesis, 2018, 50, 361-370.	2.3	21

#	Article	lF	Citations
19	Transition metal free one pot synthesis of aryl carboxylic acids via dehomologative oxidation of styrenes. Tetrahedron Letters, 2018, 59, 4340-4343.	1.4	15
20	Pyrrolo[1, 2â€e]quinoxalineâ€Based Bipolar Host Materials for Efficient Red Phosphorescent OLEDs. ChemistrySelect, 2018, 3, 10010-10018.	1.5	13
21	Tandem synthesis of aromatic amides from styrenes in water. Tetrahedron Letters, 2018, 59, 2820-2823.	1.4	7
22	An Efficient and Metal–free Synthesis of αâ€Ketoesters <i>via</i> Oxidative Cross Coupling of Arylglyoxals with Alcohols. ChemistrySelect, 2017, 2, 900-903.	1.5	6
23	The remarkable journey of catalysts from stoichiometric to catalytic quantity for allyltrimethylsilane inspired allylation of acetals, ketals, aldehydes and ketones. RSC Advances, 2017, 7, 8011-8033.	3.6	20
24	Metal-Free Dehomologative Oxidation of Arylacetic Acids for the Synthesis of Aryl Carboxylic Acids. Journal of Organic Chemistry, 2017, 82, 3781-3786.	3.2	31
25	Oxidative cyclization of amidoximes and thiohydroximic acids: A facile and efficient strategy for accessing 3,5-disubstituted 1,2,4-oxadiazoles and 1,4,2-oxathiazoles. Tetrahedron Letters, 2017, 58, 2103-2108.	1.4	23
26	Oneâ€Pot Protocol for the Synthesis of Imidazoles and Quinoxalines using <i>N</i> â€Bromosuccinimide. Advanced Synthesis and Catalysis, 2017, 359, 4217-4226.	4.3	23
27	An Efficient Synthesis of 1,2,4-Trisubstituted Imidazoles from Arylacetic Acids and N -Arylbenzamidines via Simultaneous C-H and N-H Bond Activation. ChemistrySelect, 2017, 2, 5409-5413.	1.5	6
28	An Efficient Synthesis of Pyrrolo[1,2â€ <i>a</i>]quinoxalines by Copper atalyzed Câ^'H Activation of Arylacetic Acids. Asian Journal of Organic Chemistry, 2017, 6, 1579-1583.	2.7	32
29	Iron Catalyzed Cascade Protocol for the Synthesis of Pyrrolo[1, 2â€∢i>a) quinoxalines: A Powerful Tool to Access Solid State Emissive Organic Luminophores. ChemistrySelect, 2017, 2, 6811-6817.	1.5	26
30	A multicomponent pathway-inspired regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles via [3+2] cycloaddition reaction. New Journal of Chemistry, 2015, 39, 4631-4639.	2.8	29
31	Deep eutectic solvent: a simple, environmentally benign reaction media for regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles. RSC Advances, 2015, 5, 35166-35174.	3.6	31
32	Greener [3+3] tandem annulation–oxidation approach towards the synthesis of substituted pyrimidines. New Journal of Chemistry, 2015, 39, 3639-3645.	2.8	62
33	The Oxidative Cross-Coupling of Benzonitriles with Multiform Substrates: A Domino Strategy Inspired Easy Access to α-KetoÂɨmides. Synthesis, 2015, 47, 429-438.	2.3	16
34	Iodine-Mediated Domino Protocol for the Synthesis of BenzÂamides from Ethylarenes via sp3 C–H Functionalization. Synlett, 2015, 26, 1677-1682.	1.8	19
35	I ₂ catalyzed tandem protocol for synthesis of quinoxalines via sp ³ , sp ² and sp C–H functionalization. RSC Advances, 2015, 5, 5580-5590.	3.6	61
36	Metal-free Synthesis of 2,4,6-Trisubstituted Pyrimidines using & mp;#945;, & mp;#946; Unsaturated Ketones and Benzamidine via Tandem Annulation-Oxidation Pathway. Letters in Organic Chemistry, 2015, 12, 447-458.	0.5	8

#	Article	IF	Citations
37	Bipolar Hosts Based on a Rigid 9,10â€Dihydroanthracene Scaffold for Fullâ€Color Electrophosphorescent Devices. Israel Journal of Chemistry, 2014, 54, 942-951.	2.3	8
38	Metal-free in situ sp3, sp2, and sp C–H functionalization and oxidative cross coupling with benzamidines hydrochloride: a promising approach for the synthesis of α-ketoimides. RSC Advances, 2014, 4, 60316-60326.	3.6	38
39	A facile and practical one-pot synthesis of [1,2,4]triazolo[4,3-a]pyridines. RSC Advances, 2014, 4, 34056-34064.	3.6	30
40	Highly twisted biphenyl-linked carbazole–benzimidazole hybrid bipolar host materials for efficient PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 8554-8563.	5 . 5	31
41	Fine-tuning the balance between carbazole and oxadiazole units in bipolar hosts to realize highly efficient green PhOLEDs. Organic Electronics, 2013, 14, 1086-1093.	2.6	28
42	Indolo[3,2-b]carbazole/benzimidazole hybrid bipolar host materials for highly efficient red, yellow, and green phosphorescent organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 8399.	6.7	85
43	A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. Journal of Materials Chemistry, 2012, 22, 870-876.	6.7	96
44	Miceller media accelerated Baylis–Hillman reaction. Catalysis Science and Technology, 2011, 1, 1641.	4.1	33
45	Carbazole–benzimidazole hybrid bipolar host materials for highly efficient green and blue phosphorescent OLEDs. Journal of Materials Chemistry, 2011, 21, 14971.	6.7	93
46	IBX promoted one-pot condensation of \hat{l}^2 -naphthol, aldehydes, and 1,3-dicarbonyl compounds. Green Chemistry Letters and Reviews, 2011, 4, 171-175.	4.7	6
47	IBX in aqueous medium: a green protocol for the Biginelli reaction. Catalysis Science and Technology, 2011, 1, 1128.	4.1	20
48	Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices. Advanced Materials, 2011, 23, 3876-3895.	21.0	479
49	Bismuth (III) Salts Promoted and Ionic Liquid Assisted an Efficient and Environmentally Benign One-Pot Synthesis of 1,5-Benzodiazepine Derivatives. ISRN Organic Chemistry, 2011, 2011, 1-4.	1.0	4
50	Miceller-Mediated Phosphomolybdic Acid: Highly Effective Reusable Catalyst for Synthesis of Quinoline and Its Derivatives. Synthetic Communications, 2010, 40, 2336-2340.	2.1	17
51	Heteropoly acids as useful recyclable heterogeneous catalysts for the facile and highly efficient aza-cope rearrangement of N-allylanilines. Applied Catalysis A: General, 2009, 359, 84-87.	4.3	19
52	Highly Efficient and Novel Method for Synthesis of 1,3,5-Triarylbenzenes from Acetophenones. Synthetic Communications, 2009, 39, 4117-4121.	2.1	28