
Craig Meyers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1808012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth. PLoS ONE, 2008, 3, e2557.	1.1	610
2	Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. Rna, 2009, 15, 637-647.	1.6	203
3	microRNAs are biomarkers of oncogenic human papillomavirus infections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4262-4267.	3.3	168
4	Human Papillomavirus (HPV) Upregulates the Cellular Deubiquitinase UCHL1 to Suppress the Keratinocyte's Innate Immune Response. PLoS Pathogens, 2013, 9, e1003384.	2.1	164
5	Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes. PLoS ONE, 2011, 6, e17848.	1.1	145
6	Temporal Usage of Multiple Promoters during the Life Cycle of Human Papillomavirus Type 31b. Journal of Virology, 1998, 72, 2715-2722.	1.5	99
7	The Cigarette Smoke Carcinogen Benzo[<i>a</i>]pyrene Enhances Human Papillomavirus Synthesis. Journal of Virology, 2008, 82, 1053-1058.	1.5	98
8	The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. Journal of Virology, 2018, 92, .	1.5	97
9	Human Papillomavirus Type 31b E1 and E2 Transcript Expression Correlates with Vegetative Viral Genome Amplification. Virology, 1998, 248, 218-230.	1.1	91
10	Construction of a Full Transcription Map of Human Papillomavirus Type 18 during Productive Viral Infection. Journal of Virology, 2011, 85, 8080-8092.	1.5	87
11	Tissue-Spanning Redox Gradient-Dependent Assembly of Native Human Papillomavirus Type 16 Virions. Journal of Virology, 2009, 83, 10515-10526.	1.5	77
12	Variable expression of some "housekeeping―genes during human keratinocyte differentiation. Analytical Biochemistry, 2002, 307, 341-347.	1.1	76
13	The use of nanoparticulates to treat breast cancer. Nanomedicine, 2017, 12, 2367-2388.	1.7	74
14	Upregulation of p18Ink4c expression by oncogenic HPV E6 <i>via</i> p53â€miRâ€34a pathway. International Journal of Cancer, 2011, 129, 1362-1372.	2.3	71
15	Ubiquitous Human Adeno-Associated Virus Type 2 Autonomously Replicates in Differentiating Keratinocytes of a Normal Skin Model. Virology, 2000, 272, 338-346.	1.1	69
16	The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation. Nature Communications, 2015, 6, 6537.	5.8	64
17	Organotypic (raft) epithelial tissue culture system for the differentiation-dependent replication of papillomavirus. Cytotechnology, 1996, 18, 201-210.	0.7	63
18	Susceptibility of high-risk human papillomavirus type 16 to clinical disinfectants. Journal of Antimicrobial Chemotherapy, 2014, 69, 1546-1550.	1.3	61

#	Article	IF	CITATIONS
19	Lowering the transmission and spread of human coronavirus. Journal of Medical Virology, 2021, 93, 1605-1612.	2.5	55
20	Infection and Replication of Herpes Simplex Virus Type 1 in an Organotypic Epithelial Culture System. Virology, 1997, 230, 236-243.	1.1	54
21	Human papillomavirus type 45 propagation, infection, and neutralization. Virology, 2003, 312, 1-7.	1.1	54
22	Propagation, infection, and neutralization of authentic HPV16 virus. Virology, 2004, 322, 213-219.	1.1	54
23	A risk for non-sexual transmission of human papillomavirus?. Expert Review of Anti-Infective Therapy, 2014, 12, 1165-1170.	2.0	52
24	Genome-Wide Profiling of Cervical RNA-Binding Proteins Identifies Human Papillomavirus Regulation of RNASEH2A Expression by Viral E7 and E2F1. MBio, 2019, 10, .	1.8	47
25	The role of the human papillomavirus type 18 E7 oncoprotein during the complete viral life cycle. Virology, 2005, 338, 61-68.	1.1	44
26	Altered Biology of Adeno-associated Virus Type 2 and Human Papillomavirus during Dual Infection of Natural Host Tissue. Virology, 2001, 287, 30-39.	1.1	42
27	The E7 Open Reading Frame Acts in <i>cis</i> and in <i>trans</i> To Mediate Differentiation-Dependent Activities in the Human Papillomavirus Type 16 Life Cycle. Journal of Virology, 2011, 85, 8852-8862.	1.5	42
28	Cross-Neutralization Potential of Native Human Papillomavirus N-Terminal L2 Epitopes. PLoS ONE, 2011, 6, e16405.	1.1	42
29	Genetic Analysis of the Human Papillomavirus Type 31 Differentiation-Dependent Late Promoter. Journal of Virology, 2005, 79, 3309-3321.	1.5	40
30	Susceptibility of HPV16 and 18 to high level disinfectants indicated for semi ritical ultrasound probes. Journal of Medical Virology, 2016, 88, 1076-1080.	2.5	39
31	Evidence for the coexistence of two genital HPV types within the same host cell in vitro. Virology, 2004, 321, 173-180.	1.1	38
32	Infectious Virions Produced from a Human Papillomavirus Type 18/16 Genomic DNA Chimera. Journal of Virology, 2002, 76, 4723-4733.	1.5	36
33	Superinfection Exclusion between Two High-Risk Human Papillomavirus Types during a Coinfection. Journal of Virology, 2018, 92, .	1.5	34
34	Differential Dependence on Host Cell Glycosaminoglycans for Infection of Epithelial Cells by High-Risk HPV Types. PLoS ONE, 2013, 8, e68379.	1.1	34
35	Propagation of Infectious, High-Risk HPV in Organotypic. , 2005, 119, 171-186.		33
36	Temporal and Spatial Expression of the E5a Protein during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 31b. Virology, 1998, 248, 208-217.	1.1	32

#	Article	IF	CITATIONS
37	Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
38	Two Novel Promoters in the Upstream Regulatory Region of Human Papillomavirus Type 31b Are Negatively Regulated by Epithelial Differentiation. Journal of Virology, 1999, 73, 3505-3510.	1.5	31
39	Differentiation-Dependent Interpentameric Disulfide Bond Stabilizes Native Human Papillomavirus Type 16. PLoS ONE, 2011, 6, e22427.	1.1	31
40	Papillomavirus Infectious Pathways: A Comparison of Systems. Viruses, 2015, 7, 4303-4325.	1.5	30
41	Overlapping and independent structural roles for human papillomavirus type 16 L2 conserved cysteines. Virology, 2009, 393, 295-303.	1.1	29
42	Human Papillomavirus Types 16 and 18 DNA Load in Relation to Coexistence of Other Types, Particularly Those in the Same Species. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2507-2512.	1.1	28
43	Human Papillomavirus Downregulates the Expression of IFITM1 and RIPK3 to Escape from IFNÎ ³ - and TNFα-Mediated Antiproliferative Effects and Necroptosis. Frontiers in Immunology, 2016, 7, 496.	2.2	26
44	Effect of Productive Human Papillomavirus 16 Infection on Global Gene Expression in Cervical Epithelium. Journal of Virology, 2018, 92, .	1.5	26
45	Genetic Analysis of cis Regulatory Elements within the 5′ Region of the Human Papillomavirus Type 31 Upstream Regulatory Region during Different Stages of the Viral Life Cycle. Journal of Virology, 2002, 76, 4798-4809.	1.5	23
46	Genetic and Biochemical Analysis of cis Regulatory Elements within the Keratinocyte Enhancer Region of the Human Papillomavirus Type 31 Upstream Regulatory Region during Different Stages of the Viral Life Cycle. Journal of Virology, 2004, 78, 612-629.	1.5	23
47	Expression Pattern and Subcellular Localization of Human Papillomavirus Minor Capsid Protein L2. American Journal of Pathology, 2009, 174, 136-143.	1.9	23
48	UVC radiation as an effective disinfectant method to inactivate human papillomaviruses. PLoS ONE, 2017, 12, e0187377.	1.1	22
49	Comparison of the basal and glucocorticoid-inducible activities of the upstream regulatory regions of HPV18 and HPV31 in multiple epithelial cell lines. Virology, 2003, 306, 197-202.	1.1	19
50	Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection. Viruses, 2015, 7, 5813-5830.	1.5	19
51	Adeno-Associated Virus Type 2 Increases Proteosome-Dependent Degradation of p21 WAF1 in a Human Papillomavirus Type 31b-Positive Cervical Carcinoma Line. Journal of Virology, 2006, 80, 4927-4939.	1.5	17
52	Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. Journal of Virology, 2019, 93, .	1.5	16
53	Native Human Papillomavirus Production, Quantification, and Infectivity Analysis. Methods in Molecular Biology, 2015, 1249, 317-331.	0.4	16
54	Microarray analysis of human keratinocytes from different anatomic sites reveals site-specific immune signaling and responses to human papillomavirus type 16 transfection. Molecular Medicine, 2018, 24, 23.	1.9	15

#	Article	IF	CITATIONS
55	Human Papillomavirus G-Rich Regions as Potential Antiviral Drug Targets. Nucleic Acid Therapeutics, 2021, 31, 68-81.	2.0	15
56	Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue. Virology, 2003, 315, 43-55.	1.1	14
57	Downregulation of Cdc2/CDK1 Kinase Activity Induces the Synthesis of Noninfectious Human Papillomavirus Type 31b Virions in Organotypic Tissues Exposed to Benzo[<i>a</i>]pyrene. Journal of Virology, 2010, 84, 4630-4645.	1.5	14
58	The Upstream Regulatory Region of Human Papillomavirus Type 31 Is Insensitive to Glucocorticoid Induction. Journal of Virology, 2002, 76, 9702-9715.	1.5	13
59	CD40-Mediated Amplification of Local Immunity by Epithelial Cells Is Impaired by HPV. Journal of Investigative Dermatology, 2014, 134, 2918-2927.	0.3	13
60	Adeno-associated virus type 2 infection of nude mouse human breast cancer xenograft induces necrotic death and inhibits tumor growth. Cancer Biology and Therapy, 2014, 15, 1013-1028.	1.5	12
61	Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. MBio, 2017, 8, .	1.8	12
62	Regulation of human papillomavirus type 31 late promoter activation and genome amplification by protein kinase C. Virology, 2006, 348, 328-340.	1.1	11
63	Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells. Molecular Cancer, 2011, 10, 97.	7.9	11
64	Comparison of human papillomavirus type 16 replication in tonsil and foreskin epithelia. Virology, 2016, 499, 82-90.	1.1	11
65	Papillomavirus capsid proteins mutually impact structure. Virology, 2011, 412, 378-383.	1.1	10
66	Comparisons of VLP-Based ELISA, Neutralization Assays with Native HPV, and Neutralization Assays with PsV in Detecting HPV Antibody Responses in HIV-Infected Women. Journal of AIDS & Clinical Research, 2015, 06, .	0.5	10
67	Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36. Viruses, 2017, 9, 336.	1.5	10
68	Roles for Human Papillomavirus Type 16 L1 Cysteine Residues 161, 229, and 379 in Genome Encapsidation and Capsid Stability. PLoS ONE, 2014, 9, e99488.	1.1	9
69	The ability of two chlorine dioxide chemistries to inactivate human papillomavirus ontaminated endocavitary ultrasound probes and nasendoscopes. Journal of Medical Virology, 2020, 92, 1298-1302.	2.5	9
70	Adeno-Associated Virus Type 2 Induces Apoptosis in Human Papillomavirus-Infected Cell Lines but Not in Normal Keratinocytes. Journal of Virology, 2009, 83, 10286-10292.	1.5	8
71	Mutations in HPV18 E1^E4 Impact Virus Capsid Assembly, Infectivity Competence, and Maturation. Viruses, 2017, 9, 385.	1.5	8
72	Replication of Human Papillomavirus in Culture. Methods in Molecular Biology, 2015, 1249, 39-52.	0.4	8

#	Article	IF	CITATIONS
73	Induction of the Upstream Regulatory Region of Human Papillomavirus Type 31 by Dexamethasone Is Differentiation Dependent. Journal of Virology, 2003, 77, 10975-10983.	1.5	7
74	Study of infectious virus production from HPV18/16 capsid chimeras. Virology, 2010, 405, 289-299.	1.1	7
75	Human papillomavirus type 18 chimeras containing the L2/L1 capsid genes from evolutionarily diverse papillomavirus types generate infectious virus. Virus Research, 2011, 160, 246-255.	1.1	7
76	The importance of infection prevention and control in medical ultrasound. Australasian Journal of Ultrasound in Medicine, 2015, 18, 96-99.	0.3	7
77	Allobetulone rearrangement to l8αH,19βH-ursane triterpenoids with antiviral activity. Natural Product Research, 2020, , 1-11.	1.0	7
78	A Protease Inhibitor Specifically Inhibits Growth of HPV-Infected Keratinocytes. Molecular Therapy, 2006, 13, 1142-1148.	3.7	6
79	Tumor carbohydrate antigens and strategies to develop cancer vaccines and drugs. Wuhan University Journal of Natural Sciences, 2013, 18, 1-8.	0.2	6
80	HPV18 DNA replication inactivates the early promoter P55 activity and prevents viral E6 expression. Virologica Sinica, 2016, 31, 437-440.	1.2	4
81	Anti-Retroviral Protease Inhibitors Regulate Human Papillomavirus 16 Infection of Primary Oral and Cervical Epithelium. Cancers, 2020, 12, 2664.	1.7	3
82	Hypochlorous acid as a disinfectant for highâ€risk HPV: Insight into the mechanism of action. Journal of Medical Virology, 2022, 94, 3386-3393.	2.5	3
83	Assessing Nonâ€Sexual Transmission of the Human Papillomavirus (HPV): Do Our Current Cleaning Methods Work?. Journal of Medical Virology, 2022, , .	2.5	2
84	A Comparative Study on Delivery of Externally Attached DNA by Papillomavirus VLPs and Pseudoviruses. Vaccines, 2021, 9, 1501.	2.1	1
85	Rebuttal to overinterpretation of the antiviral results for human coronavirus 229EÂrelative to severe acute respiratory syndrome coronavirusâ€2 by Rowpar Pharmaceuticals. Journal of Medical Virology, 2021, 93, 1903-1904.	2.5	0