Christopher A Bradfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals. Cell, 2000, 103, 1009-1017.	28.9	1,380
2	An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells. Journal of Immunology, 2010, 185, 3190-3198.	0.8	1,248
3	The PAS Superfamily: Sensors of Environmental and Developmental Signals. Annual Review of Pharmacology and Toxicology, 2000, 40, 519-561.	9.4	959
4	AH RECEPTOR SIGNALING PATHWAYS. Annual Review of Cell and Developmental Biology, 1996, 12, 55-89.	9.4	840
5	Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 1997, 386, 403-407.	27.8	704
6	AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunology, 2012, 13, 144-151.	14.5	646
7	The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor. Chemical Research in Toxicology, 2008, 21, 102-116.	3.3	621
8	The AH-receptor: genetics, structure and function. Pharmacogenetics and Genomics, 1993, 3, 213-230.	5.7	434
9	Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway. Journal of Biological Chemistry, 1997, 272, 8581-8593.	3.4	425
10	Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nature Medicine, 2012, 18, 1768-1777.	30.7	370
11	Ligand-dependent Interaction of the Aryl Hydrocarbon Receptor with a Novel Immunophilin Homolog in Vivo. Journal of Biological Chemistry, 1997, 272, 11452-11456.	3.4	357
12	DNA Binding Specificities and Pairing Rules of the Ah Receptor, ARNT, and SIM Proteins. Journal of Biological Chemistry, 1995, 270, 26292-26302.	3.4	337
13	The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology, 2009, 127, 299-311.	4.4	336
14	Mammalian Per-Arnt-Sim Proteins in Environmental Adaptation. Annual Review of Physiology, 2010, 72, 625-645.	13.1	321
15	Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mechanisms of Development, 1998, 73, 117-123.	1.7	311
16	Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 2015, 350, aac4250.	12.6	294
17	Dissecting the Functions of the Mammalian Clock Protein BMAL1 by Tissue-Specific Rescue in Mice. Science, 2006, 314, 1304-1308.	12.6	274
18	Identification of toxicologically predictive gene sets using cDNA microarrays. Molecular Pharmacology, 2001, 60, 1189-1194.	2.3	258

#	Article	IF	CITATIONS
19	Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17858-17863.	7.1	195
20	Resistance to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity and Abnormal Liver Development in Mice Carrying a Mutation in the Nuclear Localization Sequence of the Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2003, 278, 17767-17774.	3.4	188
21	Cross-talk between the Aryl Hydrocarbon Receptor and Hypoxia Inducible Factor Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 12115-12123.	3.4	182
22	Characterization of the Ah Receptor-associated Protein, ARA9. Journal of Biological Chemistry, 1998, 273, 33580-33587.	3.4	180
23	Progressive arthropathy in mice with a targeted disruption of theMop3/Bmal-1 locus. Genesis, 2005, 41, 122-132.	1.6	176
24	Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Research, 1994, 22, 3038-3044.	14.5	162
25	The Aryl Hydrocarbon Receptor <i>sans</i> Xenobiotics: Endogenous Function in Genetic Model Systems. Molecular Pharmacology, 2007, 72, 487-498.	2.3	155
26	The Aryl Hydrocarbon Receptor Is Required for Developmental Closure of the Ductus Venosus in the Neonatal Mouse. Molecular Pharmacology, 2005, 67, 714-720.	2.3	149
27	Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. ELife, 2014, 3, .	6.0	140
28	Genetic Components of the Circadian Clock Regulate Thrombogenesis In Vivo. Circulation, 2008, 117, 2087-2095.	1.6	130
29	ahr null alleles: distinctive or different?. Biochemical Pharmacology, 1998, 56, 781-787.	4.4	126
30	Abnormal Liver Development and Resistance to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Toxicity in Mice Carrying a Mutation in the DNA-Binding Domain of the Aryl Hydrocarbon Receptor. Toxicological Sciences, 2008, 106, 83-92.	3.1	123
31	The Aryl hydrocarbon receptor is activated by modified low-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1412-1417.	7.1	119
32	Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16677-16682.	7.1	114
33	Patent Ductus Venosus and Dioxin Resistance in Mice Harboring a Hypomorphic Arnt Allele. Journal of Biological Chemistry, 2004, 279, 16326-16331.	3.4	109
34	Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). Journal of Biological Chemistry, 2018, 293, 1994-2005.	3.4	107
35	ARA9 Modifies Agonist Signaling through an Increase in Cytosolic Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2000, 275, 6153-6159.	3.4	106
36	Aspartate Aminotransferase Generates Proagonists of the Aryl Hydrocarbon Receptor. Molecular Pharmacology, 2003, 64, 550-556.	2.3	94

#	Article	IF	CITATIONS
37	Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. Cell Metabolism, 2019, 29, 1078-1091.e5.	16.2	91
38	The role of the dioxin-responsive element cluster between the <i>Cyp1a1</i> and <i>Cyp1a2</i> loci in aryl hydrocarbon receptor biology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4923-4928.	7.1	90
39	Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure in female mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14295-14300.	7.1	90
40	Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5431-5436.	7.1	90
41	Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18757-18762.	7.1	75
42	The Aryl Hydrocarbon Receptor is a Repressor of Inflammation-associated Colorectal Tumorigenesis in Mouse. Annals of Surgery, 2016, 264, 429-436.	4.2	75
43	The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chemical Research in Toxicology, 2020, 33, 860-879.	3.3	68
44	Advances in Toxicogenomics. Chemical Research in Toxicology, 2005, 18, 403-414.	3.3	59
45	Identification of the Ah-Receptor Structural Determinants for Ligand Preferences. Toxicological Sciences, 2012, 129, 86-97.	3.1	59
46	Liver Deformation in Ahr-Null Mice: Evidence for Aberrant Hepatic Perfusion In Early Development. Molecular Pharmacology, 2006, 69, 1534-1541.	2.3	56
47	Aspects of Dioxin Toxicity Are Mediated by Interleukin 1-Like Cytokines. Molecular Pharmacology, 2005, 67, 1393-1398.	2.3	50
48	The Aryl Hydrocarbon Receptor-interacting Protein (AIP) Is Required for Dioxin-induced Hepatotoxicity but Not for the Induction of the Cyp1a1 and Cyp1a2 Genes. Journal of Biological Chemistry, 2010, 285, 35599-35605.	3.4	44
49	A Hypomorphic Allele of <i>Aryl Hydrocarbon Receptor-Associated Protein-9</i> Produces a Phenocopy of the <i>Ahr</i> -Null Mouse. Molecular Pharmacology, 2008, 74, 1367-1371.	2.3	43
50	Polycyclic aromatic hydrocarbons (PAHs) present in ambient urban dust drive proinflammatory T cell and dendritic cell responses via the aryl hydrocarbon receptor (AHR) in vitro. PLoS ONE, 2018, 13, e0209690.	2.5	40
51	SU5416, a VEGF Receptor Inhibitor and Ligand of the AHR, Represents a New Alternative for Immunomodulation. PLoS ONE, 2012, 7, e44547.	2.5	38
52	Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors. Toxicological Sciences, 2014, 140, 135-143.	3.1	38
53	Structural Identification of Diindole Agonists of the Aryl Hydrocarbon Receptor Derived from Degradation of Indole-3-pyruvic Acid. Chemical Research in Toxicology, 2009, 22, 1905-1912.	3.3	35
54	Hepatic Transcriptional Networks Induced by Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Chemical Research in Toxicology, 2007, 20, 1573-1581.	3.3	34

#	Article	IF	CITATIONS
55	<scp>d</scp> -Amino Acid Oxidase Generates Agonists of the Aryl Hydrocarbon Receptor from <scp>d</scp> -Tryptophan. Chemical Research in Toxicology, 2009, 22, 1897-1904.	3.3	33
56	Aryl Hydrocarbon Receptor Nuclear Translocator in Hepatocytes Is Required for Aryl Hydrocarbon Receptor–Mediated Adaptive and Toxic Responses in Liver. Toxicological Sciences, 2010, 118, 554-563.	3.1	33
57	Conserved genomic structure of the Cyp1a1 and Cyp1a2 loci and their dioxin responsive elements cluster. Biochemical Pharmacology, 2009, 77, 654-659.	4.4	30
58	Differential effects of diesel exhaust particles on T cell differentiation and autoimmune disease. Particle and Fibre Toxicology, 2018, 15, 35.	6.2	30
59	Mapping the 90 kDa heat shock protein binding region of the Ah receptor. IUBMB Life, 1996, 39, 589-593.	3.4	29
60	A Maternal Ahr Null Genotype Sensitizes Embryos to Chemical Teratogenesis. Journal of Biological Chemistry, 2004, 279, 30189-30194.	3.4	27
61	T cells hang in the balance. Nature, 2008, 453, 46-47.	27.8	27
62	Ambient urban dust particulate matter reduces pathologic T cells in the CNS and severity of EAE. Environmental Research, 2019, 168, 178-192.	7.5	20
63	Clustered alignments of gene-expression time series data. Bioinformatics, 2009, 25, i119-i1127.	4.1	17
64	The Aryl Hydrocarbon Receptor Signaling Pathway Is Modified through Interactions with a Kelch Protein. Molecular Pharmacology, 2006, 70, 8-15.	2.3	16
65	The Toll-like receptor agonist imiquimod is metabolized by aryl hydrocarbon receptor-regulated cytochrome P450 enzymes in human keratinocytes and mouse liver. Archives of Toxicology, 2019, 93, 1917-1926.	4.2	16
66	The aryl hydrocarbon receptor as a model PAS sensor. Toxicology Reports, 2022, 9, 1-11.	3.3	13
67	Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environment International, 2018, 113, 249-258.	10.0	8
68	Rodent genetic models of Ah receptor signaling. Drug Metabolism Reviews, 2021, 53, 350-374.	3.6	7
69	Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression. PLoS ONE, 2016, 11, e0157577.	2.5	6
70	Generation of an Allelic Series at the Ahr Locus Using an Edited Recombinant Approach. Toxicological Sciences, 2021, 180, 239-251.	3.1	6
71	The AH Receptor. , 2003, , 149-182.		3
72	Retinal pathology in the PPCD1 mouse. PLoS ONE, 2017, 12, e0185094.	2.5	2

#	Article	IF	CITATIONS
73	Alan Poland, MS, MD: 1940–2020 Poisons as Probes of Biological Function. Chemical Research in Toxicology, 2021, 34, 1-4.	3.3	2
74	12382 Circadian Disruption in Pancreatic Cancer Carcinogenesis. Journal of Clinical and Translational Science, 2021, 5, 7-8.	0.6	0
75	Enhanced sensitivity of an Ah-receptor system in yeast through condition modification and use of mammalian modifiers. Toxicology Reports, 2022, 9, 513-520.	3.3	0