Karoly Tokesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of guiding of multiply charged projectiles through insulating capillaries. Physical Review A, 2005, 72, .	2.5	139
2	Some Applications of high-energy, high-resolution Auger electron spectroscopy using bremsstrahlung radiation. Surface and Interface Analysis, 1992, 19, 9-15.	1.8	113
3	Electron Guiding through Insulating Nanocapillaries. Physical Review Letters, 2009, 102, 163201.	7.8	71
4	Hollow-ion formation in microcapillaries. Physical Review A, 2001, 64, .	2.5	49
5	Electron capture to the continuum at 54.4 eV positron-argon atom collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 3067-3077.	1.5	46
6	Energy shift and broadening of the spectra of electrons backscattered elastically from solid surfaces. Surface and Interface Analysis, 2001, 31, 1019-1026.	1.8	46
7	Versatility of the exit channels in the three-body CTMC method. Nuclear Instruments & Methods in Physics Research B, 1994, 86, 201-204.	1.4	44
8	Double electron capture in collisions up to 1500 keV/amu projectile impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L119-L125.	1.5	43
9	Time evolution of electron transmission through a single glass macrocapillary: Charge build-up, sudden discharge, and recovery. Physical Review A, 2011, 83, .	2.5	41
10	Absolute determination of optical constants by reflection electron energy loss spectroscopy. Physical Review B, 2017, 95, .	3.2	28
11	Optical properties of silicon and germanium determined by high-precision analysis of reflection electron energy loss spectroscopy spectra. Physical Review B, 2019, 100, .	3.2	28
12	Absolute determination of optical constants of three transition metals using reflection electron energy loss spectroscopy. Journal of Applied Physics, 2018, 123, .	2.5	27
13	Monte Carlo modelling of the backscattered electron spectra of silver at the 200 eV and 2 keV primary electron energies. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 427-432.	1.7	24
14	Determination of electron inelastic mean free path of three transition metals from reflection electron energy loss spectroscopy spectrum measurement data. European Physical Journal D, 2019, 73, 1.	1.3	24
15	Determination of electron backscattering coefficient of beryllium by a high-precision Monte Carlo simulation. Nuclear Materials and Energy, 2021, 26, 100862.	1.3	22
16	Monte Carlo simulation study of electron interaction with solids and surfaces. Surface and Interface Analysis, 2006, 38, 657-663.	1.8	21
17	Optical properties and excitation energies of iridium derived from reflection electron energy loss spectroscopy spectra. Applied Surface Science, 2018, 456, 999-1003.	6.1	21
18	Study of optical and electronic properties of nickel from reflection electron energy loss spectra. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 475-481.	1.4	20

KAROLY TOKESI

#	Article	IF	CITATIONS
19	Existence of the electron capture to the continuum peak at positron impact. Nuclear Instruments & Methods in Physics Research B, 1999, 154, 259-262.	1.4	17
20	Interaction of proton microbeam with the inner surface of a polytetrafluoroethylene macrocapillary. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 328-331.	1.4	15
21	Electron backscattering coefficients of molybdenum and tungsten based on the Monte Carlo simulations. Journal of Nuclear Materials, 2021, 553, 153042.	2.7	14
22	Incident beam intensity dependence of the charge-up process of the guiding of 1 MeV proton microbeam through a Teflon microcapillary. European Physical Journal D, 2015, 69, 1.	1.3	12
23	Optical properties of amorphous carbon determined by reflection electron energy loss spectroscopy spectra. Physical Chemistry Chemical Physics, 2021, 23, 25335-25346.	2.8	12
24	EFFECTS OF SURFACE LOSS IN REELS SPECTRA OF SILVER. Surface Review and Letters, 1997, 04, 955-958.	1.1	11
25	Quantification of surface effects: Monte Carlo simulation of REELS spectra to obtain surface excitation parameter. Surface Science, 2009, 603, 1236-1243.	1.9	8
26	Simulation of the time evolution of 1 MeV proton microbeam transmission through an insulating macrocapillary. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 417-420.	1.4	8
27	Transmission dynamics of 1â€ [–] MeV H+ microbeam guided through an insulating macrocapillary. Nuclear Instruments & Methods in Physics Research B, 2019, 460, 216-219.	1.4	8
28	Temporal evolution of the energy spectrum of proton microbeam guided through an insulating macrocapillary. Nuclear Instruments & Methods in Physics Research B, 2019, 458, 7-11.	1.4	6
29	Ionization Cross Sections in the Collision between Two Ground State Hydrogen Atoms at Low Energies. Atoms, 2020, 8, 31.	1.6	6
30	Projectile ionization at forward observation angles for intermediate energy H + H collisions. Nuclear Instruments & Methods in Physics Research B, 1994, 86, 147-150.	1.4	5
31	Surface and bulk plasmon excitations of silver by electron impact. European Physical Journal D, 2019, 73, 1.	1.3	5
32	Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115.	1.4	4
33	Study of electron transmission through a platinum tube. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 86-89.	1.4	4
34	Individual separation of surface, bulk and Begrenzungs effect components in the surface electron energy spectra. Scientific Reports, 2021, 11, 5954.	3.3	4
35	Excitation cross sections in a collision between two ground-state hydrogen atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 065202.	1.5	4
36	Target electron removal in C ⁵⁺ + H collision. Nuclear Fusion, 2022, 62, 026009.	3.5	4

KAROLY TOKESI

#	Article	IF	CITATIONS
37	Determination of yield ratios of elastically backscattered electrons for deriving inelastic mean free paths in solids. Surface and Interface Analysis, 2000, 30, 202-206.	1.8	3
38	Electron transmission through a macroscopic platinum capillary. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 413-416.	1.4	3
39	Double differential distributions of e-emission in ionization of N ₂ by 3, 4 and 5 keV electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 235201.	1.5	3
40	Ionization cross sections in collisions between two hydrogen atoms by a quasi-classical trajectory Monte Carlo model. Physical Chemistry Chemical Physics, 0, , .	2.8	3
41	Effective energy loss function of silver derived from reflection electron energy loss spectra. Surface and Interface Analysis, 2006, 38, 632-635.	1.8	2
42	Spatial and temporal distribution of a 1-MeV proton microbeam guided through a poly(tetrafluoroethylene) macrocapillary. Physical Review A, 2021, 103, .	2.5	2
43	Projectile electron loss, excitation and de-excitation cross section database in a collision between two hydrogen atoms in the impact energy range between 50 keV–5.0 MeV, Part I: Target is in ground state. Atomic Data and Nuclear Data Tables, 2022, 146, 101513.	2.4	2
44	Electron transmission through a steel capillary. Nuclear Instruments & Methods in Physics Research B, 2018, 423, 87-91.	1.4	1