List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807693/publications.pdf Version: 2024-02-01

YONCHU FENC

#	Article	IF	CITATIONS
1	A moving window-based spatial assessment method for dynamic urban growth simulations. Geocarto International, 2024, 37, 15282-15301.	1.7	3
2	Using spatial heterogeneity to strengthen the neighbourhood effects of urban growth simulation models. Journal of Spatial Science, 2023, 68, 319-337.	1.0	3
3	Simulating the effect of urban light rail transit on urban development by coupling cellular automata and conjugate gradients. Geocarto International, 2022, 37, 2346-2364.	1.7	7
4	A spatial error-based cellular automata approach to reproducing and projecting dynamic urban expansion. Geocarto International, 2022, 37, 560-580.	1.7	6
5	Comparison of change and static state as the dependent variable for modeling urban growth. Geocarto International, 2022, 37, 6975-6998.	1.7	6
6	Firefly algorithm-based cellular automata for reproducing urban growth and predicting future scenarios. Sustainable Cities and Society, 2022, 76, 103444.	5.1	20
7	Automatic Registration of Very Low Overlapping Array InSAR Point Clouds in Urban Scenes. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-25.	2.7	2
8	The effects of factor generalization scales on the reproduction of dynamic urban growth. Geo-Spatial Information Science, 2022, 25, 457-475.	2.4	4
9	Automatic selection of permanent scatterers-based GCPs for refinement and reflattening in InSAR DEM generation. International Journal of Digital Earth, 2022, 15, 954-974.	1.6	3
10	A comparison of proximity and accessibility drivers in simulating dynamic urban growth. Transactions in GIS, 2021, 25, 923-947.	1.0	7
11	A Comparative Study of DEM Reconstruction Using the Single-Baseline and Multibaseline InSAR Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8512-8521.	2.3	5
12	Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai. Forests, 2021, 12, 476.	0.9	27
13	How do urban spatial patterns influence the river cooling effect? A case study of the Huangpu Riverfront in Shanghai, China. Sustainable Cities and Society, 2021, 69, 102835.	5.1	26
14	To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 2021, 14, 1213-1235.	1.6	7
15	Impacts of spatial scale on the delineation of spatiotemporal urban expansion. Ecological Indicators, 2021, 129, 107896.	2.6	9
16	Reducing spatial autocorrelation in the dynamic simulation of urban growth using eigenvector spatial filtering. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102434.	1.4	7
17	A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. International Journal of Geographical Information Science, 2020, 34, 74-97.	2.2	49
18	A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 2020, 34, 866-898.	2.2	94

#	Article	IF	CITATIONS
19	Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Science of the Total Environment, 2020, 712, 136509.	3.9	46
20	Modeling changes in China's 2000–2030 carbon stock caused by land use change. Journal of Cleaner Production, 2020, 252, 119659.	4.6	58
21	A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules. GIScience and Remote Sensing, 2020, 57, 924-942.	2.4	14
22	Modeling urban encroachment on ecological land using cellular automata and cross-entropy optimization rules. Science of the Total Environment, 2020, 744, 140996.	3.9	24
23	Spatially-explicit modeling and intensity analysis of China's land use change 2000–2050. Journal of Environmental Management, 2020, 263, 110407.	3.8	36
24	Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Computers, Environment and Urban Systems, 2020, 81, 101459.	3.3	53
25	Spatiotemporal spread pattern of the COVID-19 cases in China. PLoS ONE, 2020, 15, e0244351.	1.1	20
26	Spatiotemporal spread pattern of the COVID-19 cases in China. , 2020, 15, e0244351.		0
27	Spatiotemporal spread pattern of the COVID-19 cases in China. , 2020, 15, e0244351.		0
28	Spatiotemporal spread pattern of the COVID-19 cases in China. , 2020, 15, e0244351.		0
29	Spatiotemporal spread pattern of the COVID-19 cases in China. , 2020, 15, e0244351.		0
30	Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China. Remote Sensing, 2019, 11, 182.	1.8	51
31	How much can temporally stationary factors explain cellular automata-based simulations of past and future urban growth?. Computers, Environment and Urban Systems, 2019, 76, 150-162.	3.3	28
32	Urban expansion simulation and scenario prediction using cellular automata: comparison between individual and multiple influencing factors. Environmental Monitoring and Assessment, 2019, 191, 291.	1.3	17
33	How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach. Cities, 2019, 92, 247-260.	2.7	20
34	Long-Term Regional Environmental Risk Assessment and Future Scenario Projection at Ningbo, China Coupling the Impact of Sea Level Rise. Sustainability, 2019, 11, 1560.	1.6	6
35	Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban growth simulation. GIScience and Remote Sensing, 2019, 56, 1024-1045.	2.4	31
36	GlobeLand30 maps show four times larger gross than net land change from 2000 to 2010 in Asia. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 240-248.	1.4	31

#	Article	IF	CITATIONS
37	Impacts of changing spatial scales on CPUE–factor relationships of <i>Ommastrephes bartramii</i> in the northwest Pacific. Fisheries Oceanography, 2019, 28, 143-158.	0.9	5
38	The impact of spatial scale on local Moran's I clustering of annual fishing effort for Dosidicus gigas offshore Peru. Journal of Oceanology and Limnology, 2019, 37, 330-343.	0.6	9
39	Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Science of the Total Environment, 2018, 633, 1469-1479.	3.9	95
40	Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecological Indicators, 2018, 87, 22-32.	2.6	81
41	Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. GIScience and Remote Sensing, 2018, 55, 678-698.	2.4	79
42	Calibration of cellular automata models using differential evolution to simulate present and future land use. Transactions in GIS, 2018, 22, 582-601.	1.0	16
43	Comparison of metaheuristic cellular automata models: A case study of dynamic land use simulation in the Yangtze River Delta. Computers, Environment and Urban Systems, 2018, 70, 138-150.	3.3	52
44	Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models. Geocarto International, 2018, 33, 470-488.	1.7	37
45	Examining spatiotemporal distribution and CPUE-environment relationships for the jumbo flying squid Dosidicus gigas offshore Peru based on spatial autoregressive model. Journal of Oceanology and Limnology, 2018, 36, 942-955.	0.6	4
46	Urban Growth Modeling and Future Scenario Projection Using Cellular Automata (CA) Models and the R Package Optimx. ISPRS International Journal of Geo-Information, 2018, 7, 387.	1.4	16
47	The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models. Sustainability, 2018, 10, 4002.	1.6	16
48	Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Global and Planetary Change, 2018, 167, 24-34.	1.6	49
49	Impacts of changing scale on Getis-Ord Gi* hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean. Acta Oceanologica Sinica, 2018, 37, 67-76.	0.4	32
50	A neural network and landscape metrics to propose a flexible urban growth boundary: A case study. Ecological Indicators, 2018, 93, 952-965.	2.6	77
51	Modeling Monthly Spatial Distribution of Ommastrephes bartramii CPUE in the Northwest Pacific and Its Spatially Nonstationary Relationships with the Marine Environment. Journal of Ocean University of China, 2018, 17, 647-658.	0.6	1
52	Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change. Environmental Monitoring and Assessment, 2017, 189, 515.	1.3	32
53	Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth. Environmental Earth Sciences, 2017, 76, 1.	1.3	19
54	A comparative study of spatially clustered distribution of jumbo flying squid (Dosidicus gigas) offshore Peru. Journal of Ocean University of China, 2017, 16, 490-500.	0.6	13

#	Article	IF	CITATIONS
55	Spatially explicit assessment of land ecological security with spatial variables and logistic regression modeling in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2235-2249.	1.9	36
56	Detection of spatial hot spots and variation for the neon flying squid Ommastrephes bartramii resources in the northwest Pacific Ocean. Chinese Journal of Oceanology and Limnology, 2017, 35, 921-935.	0.7	8
57	Simulation of Dynamic Urban Growth with Partial Least Squares Regression-Based Cellular Automata in a GIS Environment. ISPRS International Journal of Geo-Information, 2016, 5, 243.	1.4	18
58	Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China. Sustainability, 2016, 8, 1045.	1.6	45
59	The effects of changing spatial scales on spatial patterns of CPUE for Ommastrephes bartramii in the northwest Pacific Ocean. Fisheries Research, 2016, 183, 1-12.	0.9	12
60	Scenario prediction of emerging coastal city using CA modeling under different environmental conditions: a case study of Lingang New City, China. Environmental Monitoring and Assessment, 2016, 188, 540.	1.3	25
61	Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1387-1400.	1.9	74
62	Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics. Ecological Indicators, 2015, 53, 18-27.	2.6	65
63	Shoreline mapping with cellular automata and the shoreline progradation analysis in Shanghai, China from 1979 to 2008. Arabian Journal of Geosciences, 2015, 8, 4337-4351.	0.6	17
64	Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling. Land, 2014, 3, 719-738.	1.2	57
65	A Cellular Automata Model Based on Nonlinear Kernel Principal Component Analysis for Urban Growth Simulation. Environment and Planning B: Planning and Design, 2013, 40, 117-134.	1.7	23
66	A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 2013, 27, 449-466.	2.2	73
67	Remote Sensing Based Land Use Change and Landscape Pattern Analysis in Taicang County, China. , 2012, , .		0
68	An Optimised Cellular Automata Model Based on Adaptive Genetic Algorithm for Urban Growth Simulation. Lecture Notes in Geoinformation and Cartography, 2012, , 27-38.	0.5	9
69	A Logistic Based Cellular Automata Model for Continuous Urban Growth Simulation: A Case Study of the Gold Coast City, Australia. , 2012, , 643-662.		31
70	Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 2011, 102, 188-196.	3.4	178