
Michael Small

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consistency Hierarchy of Reservoir Computers. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2586-2595.	11.3	4
2	Epidemic dynamics on higher-dimensional small world networks. Applied Mathematics and Computation, 2022, 421, 126911.	2.2	5
3	Characterisation of neonatal cardiac dynamics using ordinal partition network. Medical and Biological Engineering and Computing, 2022, 60, 829.	2.8	1
4	Link prediction for long-circle-like networks. Physical Review E, 2022, 105, 024311.	2.1	11
5	Reservoir time series analysis: Using the response of complex dynamical systems as a universal indicator of change. Chaos, 2022, 32, 033109.	2.5	5
6	Objective Domain Boundaries Detection in New Caledonian Nickel Laterite from Spectra Using Quadrant Scan. Minerals (Basel, Switzerland), 2022, 12, 49.	2.0	3
7	A tighter generalization bound for reservoir computing. Chaos, 2022, 32, 043115.	2.5	1
8	Multiple Sensors Data Integration for Traffic Incident Detection Using the Quadrant Scan. Sensors, 2022, 22, 2933.	3.8	4
9	Modeling chaotic systems: Dynamical equations vs machine learning approach. Communications in Nonlinear Science and Numerical Simulation, 2022, 114, 106452.	3.3	7
10	Suboptimal Control and Targeted Constant Control for Semi-Random Epidemic Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2602-2610.	9.3	15
11	Exploring the optimal network topology for spreading dynamics. Physica A: Statistical Mechanics and Its Applications, 2021, 564, 125535.	2.6	2
12	The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks. Applied Mathematics and Computation, 2021, 392, 125730.	2.2	0
13	Inclusivity enhances robustness and efficiency of social networks. Physica A: Statistical Mechanics and Its Applications, 2021, 563, 125490.	2.6	13
14	Detecting Asset Cascading Failures Using Complex Network Analysis. IEEE Access, 2021, 9, 120624-120637.	4.2	0
15	Estimating topological entropy using ordinal partition networks. Physical Review E, 2021, 103, 022214.	2.1	5
16	Revisiting the memory capacity in reservoir computing of directed acyclic network. Chaos, 2021, 31, 033106.	2.5	3
17	Reservoir computing with swarms. Chaos, 2021, 31, 033121.	2.5	8
18	Parameter extraction with reservoir computing: Nonlinear time series analysis and application to industrial maintenance. Chaos, 2021, 31, 033122.	2.5	2

#	Article	IF	CITATIONS
19	Representing complex networks without connectivity via spectrum series. Information Sciences, 2021, 563, 16-22.	6.9	3
20	IEEE Access Special Section Editorial: Big Data Learning and Discovery. IEEE Access, 2021, 9, 158064-158073.	4.2	1
21	Grading your models: Assessing dynamics learning of models using persistent homology. Chaos, 2021, 31, 123109.	2.5	3
22	Synchronization of reservoir computers with applications to communications. Physica A: Statistical Mechanics and Its Applications, 2020, 544, 123453.	2.6	7
23	Fast automatic detection of geological boundaries from multivariate log data using recurrence. Computers and Geosciences, 2020, 135, 104362.	4.2	18
24	Global Stability of Epidemic Models With Imperfect Vaccination and Quarantine on Scale-Free Networks. IEEE Transactions on Network Science and Engineering, 2020, 7, 1583-1596.	6.4	32
25	Permutation Entropy of State Transition Networks to Detect Synchronization. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050154.	1.7	6
26	Navigating differential structures in complex networks. Physical Review E, 2020, 102, 062301.	2.1	1
27	Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping. Physica A: Statistical Mechanics and Its Applications, 2020, 560, 125108.	2.6	11
28	Modelling Strong Control Measures for Epidemic Propagation With Networks—A COVID-19 Case Study. IEEE Access, 2020, 8, 109719-109731.	4.2	41
29	Particle-resolved direct numerical simulation of drag force on permeable, non-spherical aggregates. Chemical Engineering Science, 2020, 218, 115582.	3.8	11
30	Quantifying the generalization capacity of Markov models for melody prediction. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124351.	2.6	5
31	Constrained Markov order surrogates. Physica D: Nonlinear Phenomena, 2020, 406, 132437.	2.8	4
32	Reciprocal characterization from multivariate time series to multilayer complex networks. Chaos, 2020, 30, 013137.	2.5	6
33	Laminar chaos in nonlinear electronic circuits with delay clock modulation. Physical Review E, 2020, 101, 012215.	2.1	7
34	Growing networks with communities: A distributive link model. Chaos, 2020, 30, 041101.	2.5	27
35	A novel metric for community detection. Europhysics Letters, 2020, 129, 68002.	2.0	10
36	Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach. Physical Review E, 2020, 102, 033314.	2.1	17

#	Article	IF	CITATIONS
37	Quantifying Robustness and Capacity of Reservoir Computers with Consistency Profiles. Lecture Notes in Computer Science, 2020, , 447-458.	1.3	4
38	Detecting and Predicting Tipping Points. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1930022.	1.7	6
39	Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Science Translational Medicine, 2019, 11, .	12.4	147
40	Predator-prey games on complex networks. Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104911.	3.3	10
41	Faint phase synchronization detection through structured orthomax rotations in singular spectrum analysis. Physical Review E, 2019, 100, 042218.	2.1	1
42	Quadrant scan for multi-scale transition detection. Chaos, 2019, 29, 103117.	2.5	11
43	Network science meets algebraic topology. National Science Review, 2019, 6, 1064-1065.	9.5	2
44	The reliability of recurrence network analysis is influenced by the observability properties of the recorded time series. Chaos, 2019, 29, 083101.	2.5	5
45	Modelling the effect of heterogeneous vaccination on metapopulation epidemic dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125996.	2.1	4
46	The reservoir's perspective on generalized synchronization. Chaos, 2019, 29, 093133.	2.5	25
47	Introduction to Focus Issue: Complex Network Approaches to Cyber-Physical Systems. Chaos, 2019, 29, 093123.	2.5	16
48	Link prediction for tree-like networks. Chaos, 2019, 29, 061103.	2.5	45
49	Reconstruction of Complex Dynamical Systems from Time Series using Reservoir Computing. , 2019, , .		8
50	The active selfish herd. Journal of Theoretical Biology, 2019, 471, 82-90.	1.7	3
51	Synchronization of chaotic systems and their machine-learning models. Physical Review E, 2019, 99, 042203.	2.1	94
52	An Adaptive-Phasor Approach to PMU Measurement Rectification for LFOD Enhancement. IEEE Transactions on Power Systems, 2019, 34, 3941-3950.	6.5	5
53	Identification of Dynamical Behavior of Pseudoperiodic Time Series by Network Community Structure. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1905-1909.	3.0	12
54	Long-range correlation properties of stationary linear models with mixed periodicities. Physical Review E, 2019, 99, 022128.	2.1	2

#	Article	IF	CITATIONS
55	Consistency in echo-state networks. Chaos, 2019, 29, 023118.	2.5	39
56	Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Physical Review E, 2019, 100, 062307.	2.1	20
57	Learned emergence in selfish collective motion. Chaos, 2019, 29, 123101.	2.5	6
58	Review mechanism promotes knowledge transmission in complex networks. Applied Mathematics and Computation, 2019, 340, 113-125.	2.2	24
59	Comparing capability of scenario hazard identification methods by the PIC (Plant-People-Procedure) Tj ETQq1 1	0.784314 4.9	rg₿Ţ /Overl <mark>oc</mark>
60	The use of the perimeter-area method to calculate the fractal dimension of aggregates. Powder Technology, 2019, 343, 551-559.	4.2	42
61	On system behaviour using complex networks of a compression algorithm. Chaos, 2018, 28, 013101.	2.5	13
62	Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law. Physical Review E, 2018, 97, 032320.	2.1	6
63	A Novel Control Strategy of DFIG Wind Turbines in Complex Power Systems for Enhancement of Primary Frequency Response and LFOD. IEEE Transactions on Power Systems, 2018, 33, 1811-1823.	6.5	48
64	A Load-Forecasting-Based Adaptive Parameter Optimization Strategy of STATCOM Using ANNs for Enhancement of LFOD in Power Systems. IEEE Transactions on Industrial Informatics, 2018, 14, 2463-2472.	11.3	40
65	Fault prediction and modelling in transport networks. , 2018, , .		3
66	Detecting Determinism in Time Series with Complex Networks Constructed Using a Compression Algorithm. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850165.	1.7	2
67	Cooperative output regulation problem of multi-agent systems with stochastic packet dropout and time-varying communication delay. Journal of the Franklin Institute, 2018, 355, 8664-8682.	3.4	13
68	Is Bach's brain a Markov chain? Recurrence quantification to assess Markov order for short, symbolic, musical compositions. Chaos, 2018, 28, 085715.	2.5	14
69	From local uncertainty to global predictions: Making predictions on fractal basins. PLoS ONE, 2018, 13, e0194926.	2.5	7
70	Epidemic spreading on metapopulation networks including migration and demographics. Chaos, 2018, 28, 083102.	2.5	11
71	Complex networks untangle competitive advantage in Australian football. Chaos, 2018, 28, 053105.	2.5	17
72	Predicting search time when hunting for multiple moving targets: A recursive harmonic law. Chaos, 2018, 28, 083109.	2.5	7

#	Article	IF	CITATIONS
73	Constructing directed networks from multivariate time series using linear modelling technique. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 437-455.	2.6	15
74	Brain anomaly networks uncover heterogeneous functional reorganization patterns after stroke. NeuroImage: Clinical, 2018, 20, 523-530.	2.7	16
75	Detection of core-periphery structure in networks based on 3-tuple motifs. Chaos, 2018, 28, 053121.	2.5	9
76	An Exploration and Simulation of Epidemic Spread and its Control in Multiplex Networks. SIAM Journal on Applied Mathematics, 2018, 78, 1602-1631.	1.8	9
77	Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks. Bulletin of Mathematical Biology, 2018, 80, 2049-2087.	1.9	15
78	Ordinal Network Measures â \in " Quantifying Determinism in Data. , 2018, , .		2
79	Fitness networks for real world systems via modified preferential attachment. Physica A: Statistical Mechanics and Its Applications, 2017, 474, 49-60.	2.6	16
80	Memory and betweenness preference in temporal networks induced from time series. Scientific Reports, 2017, 7, 41951.	3.3	20
81	Modelling and tracking the flight dynamics of flocking pigeons based on real GPS data (small flock). Ecological Modelling, 2017, 344, 62-72.	2.5	9
82	Link direction for link prediction. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 767-776.	2.6	38
83	Multiscale ordinal network analysis of human cardiac dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160292.	3.4	55
84	Mathematical methods in medicine: neuroscience, cardiology and pathology. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170016.	3.4	12
85	Regenerating time series from ordinal networks. Chaos, 2017, 27, 035814.	2.5	35
86	The role of direct links for link prediction in evolving networks. Europhysics Letters, 2017, 117, 28002.	2.0	30
87	Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nature Reviews Drug Discovery, 2017, 16, 264-272.	46.4	204
88	Multitarget search on complex networks: A logarithmic growth of global mean random cover time. Chaos, 2017, 27, 093103.	2.5	11
89	Constructing ordinal partition transition networks from multivariate time series. Scientific Reports, 2017, 7, 7795.	3.3	68
90	Tracking a single pigeon using a shadowing filter algorithm. Ecology and Evolution, 2017, 7, 4419-4431.	1.9	10

#	Article	IF	CITATIONS
91	Hunting for a moving target on a complex network. Europhysics Letters, 2017, 119, 48006.	2.0	13
92	Multiple random walks on complex networks: A harmonic law predicts search time. Physical Review E, 2017, 95, 052103.	2.1	20
93	Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases. Applied Mathematics and Computation, 2017, 294, 332-342.	2.2	66
94	Advances in Time Series Analysis and Its Applications. Mathematical Problems in Engineering, 2016, 2016, 1-1.	1.1	0
95	Counting forbidden patterns in irregularly sampled time series. I. The effects of under-sampling, random depletion, and timing jitter. Chaos, 2016, 26, 123103.	2.5	33
96	Complex network analysis of time series. Europhysics Letters, 2016, 116, 50001.	2.0	230
97	Counting forbidden patterns in irregularly sampled time series. II. Reliability in the presence of highly irregular sampling. Chaos, 2016, 26, 123104.	2.5	30
98	Navigation by anomalous random walks on complex networks. Scientific Reports, 2016, 6, 37547.	3.3	16
99	Examining <i>k</i> -nearest neighbour networks: Superfamily phenomena and inversion. Chaos, 2016, 26, 043101.	2.5	17
100	Evolving networks—Using past structure to predict the future. Physica A: Statistical Mechanics and Its Applications, 2016, 455, 120-135.	2.6	30
101	Prevention of infectious diseases by public vaccination and individual protection. Journal of Mathematical Biology, 2016, 73, 1561-1594.	1.9	30
102	A general stochastic model for studying time evolution of transition networks. Physica A: Statistical Mechanics and Its Applications, 2016, 464, 198-210.	2.6	13
103	Subspace based network community detection using sparse linear coding. , 2016, , .		3
104	Dissipative propagation of pressure waves along the slip-lines of yielding material. International Journal of Engineering Science, 2016, 107, 149-168.	5.0	0
105	Constructing networks from a dynamical system perspective for multivariate nonlinear time series. Physical Review E, 2016, 93, 032323.	2.1	25
106	Subspace Based Network Community Detection Using Sparse Linear Coding. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 801-812.	5.7	59
107	A General Model for Studying Time Evolution of Transition Networks. Understanding Complex Systems, 2016, , 373-393.	0.6	0
108	Modelling real disease dynamics with behaviourally adaptive complex networks. Physics of Life Reviews, 2015, 15, 49-50.	2.8	2

2

#	Article	IF	CITATIONS
109	Practical synchronization on complex dynamical networks via optimal pinning control. Physical Review E, 2015, 92, 010903.	2.1	16
110	Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension. Scientific Reports, 2015, 5, 17309.	3.3	27
111	Improvements to local projective noise reduction through higher order and multiscale refinements. Chaos, 2015, 25, 063114.	2.5	8
112	Dynamical Systems Induced on Networks Constructed from Time Series. Entropy, 2015, 17, 6433-6446.	2.2	8
113	Effects of Edge Directions on the Structural Controllability of Complex Networks. PLoS ONE, 2015, 10, e0135282.	2.5	12
114	Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550013.	1.7	6
115	Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos, 2015, 25, 053101.	2.5	127
116	Growing optimal scale-free networks via likelihood. Physical Review E, 2015, 91, 042801.	2.1	22
117	Enhancing complex network controllability by minimum link direction reversal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1321-1325.	2.1	22
118	Exactly scale-free scale-free networks. Physica A: Statistical Mechanics and Its Applications, 2015, 433, 182-197.	2.6	23
119	Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudo-periodic and high-dimensional nature. Chaos, 2015, 25, 043107.	2.5	53
120	Influence of dynamic immunization on epidemic spreading in networks. Physica A: Statistical Mechanics and Its Applications, 2015, 419, 566-574.	2.6	22
121	Epidemic threshold determined by the first moments of network with alternating degree distributions. Physica A: Statistical Mechanics and Its Applications, 2015, 419, 585-593.	2.6	5
122	Long-term changes in the north–south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs. Nonlinear Processes in Geophysics, 2014, 21, 1113-1126.	1.3	57
123	Infectious Agents in Heterogeneous Systems: When Friends Matter. IEEE Circuits and Systems Magazine, 2014, 14, 58-74.	2.3	0
124	Characterizing system dynamics with a weighted and directed network constructed from time series data. Chaos, 2014, 24, 024402.	2.5	67
125	Basin of Attraction Determines Hysteresis in Explosive Synchronization. Physical Review Letters, 2014, 112, 114102.	7.8	110

126 How is that complex network complex?. , 2014, , .

8

#	Article	IF	CITATIONS
127	A complex systems analysis of stick-slip dynamics of a laboratory fault. Chaos, 2014, 24, 013132.	2.5	10
128	Random complex networks. National Science Review, 2014, 1, 357-367.	9.5	12
129	Uncovering interaction patterns of multi-agent collective motion via complex network analysis. , 2014, , .		1
130	Threshold analysis of the susceptible-infected-susceptible model on overlay networks. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 2435-2443.	3.3	11
131	Complex network approach to characterize the statistical features of the sunspot series. New Journal of Physics, 2014, 16, 013051.	2.9	45
132	Maximum entropy networks are more controllable than preferential attachment networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3426-3430.	2.1	15
133	Estimating the epidemic threshold on networks by deterministic connections. Chaos, 2014, 24, 043124.	2.5	3
134	Time-series analysis of networks: Exploring the structure with random walks. Physical Review E, 2014, 90, 022804.	2.1	27
135	Response of the parameters of a neural network to pseudoperiodic time series. Physica D: Nonlinear Phenomena, 2014, 268, 79-90.	2.8	6
136	Time series analysis of the developed financial markets' integration using visibility graphs. Physica A: Statistical Mechanics and Its Applications, 2014, 410, 483-495.	2.6	37
137	Adaptive cluster synchronization in networks with time-varying and distributed coupling delays. Applied Mathematical Modelling, 2014, 38, 1300-1314.	4.2	30
138	Verifying chaotic dynamics from experimental data. IEICE Proceeding Series, 2014, 1, 373-376.	0.0	0
139	Strongly assortative networks: creation, structure and dynamics. IEICE Proceeding Series, 2014, 1, 243-246.	0.0	0
140	Multiscale resolution of networks of granular media network evolution—a network of networks. IEICE Proceeding Series, 2014, 2, 294-297.	0.0	0
141	A surrogate for networks—How scale-free is my scale-free network?. IEICE Proceeding Series, 2014, 2, 236-239.	0.0	0
142	Superinfection Behaviors on Scale-Free Networks with Competing Strains. Journal of Nonlinear Science, 2013, 23, 113-127.	2.1	44
143	Unraveling complexity in interspecies interaction through nonlinear dynamical models. Acta Ethologica, 2013, 16, 21-30.	0.9	6
144	Dynamical diversity induced by individual responsive immunization. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 2792-2802.	2.6	8

#	Article	IF	CITATIONS
145	What exactly are the properties of scale-free and other networks?. Europhysics Letters, 2013, 103, 58004.	2.0	17
146	Temporal prediction of epidemic patterns in community networks. New Journal of Physics, 2013, 15, 113033.	2.9	10
147	Impacts of subsidy policies on vaccination decisions in contact networks. Physical Review E, 2013, 88, 012813.	2.1	57
148	Complex networks from time series: Capturing dynamics. , 2013, , .		42
149	Degree-based attacks are not optimal for desynchronization in general networks. Physical Review E, 2013, 88, 022817.	2.1	3
150	Characterizing chaotic dynamics from simulations of large strain behavior of a granular material under biaxial compression. Chaos, 2013, 23, 013113.	2.5	9
151	Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity. Physical Review E, 2013, 87, 042803.	2.1	45
152	Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. Journal of Neurophysiology, 2013, 109, 2739-2756.	1.8	17
153	Quantifying network properties in multi-electrode recordings: spatiotemporal characterization and inter-trial variation of evoked gamma oscillations in mouse somatosensory cortex in vitro. Frontiers in Computational Neuroscience, 2013, 7, 134.	2.1	7
154	A nonlinear dynamical systems modelling approach unveils chaotic dynamics in simulations of large strain behaviour of a granular material under biaxial compression. AIP Conference Proceedings, 2013, ,	0.4	0
155	Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion. PLoS Computational Biology, 2012, 8, e1002449.	3.2	19
156	Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure. Chaos, 2012, 22, 023104.	2.5	17
157	Reciprocal relationships in collective flights of homing pigeons. Physical Review E, 2012, 85, 026120.	2.1	18
158	Multiscale characterization of recurrence-based phase space networks constructed from time series. Chaos, 2012, 22, 013107.	2.5	50
159	Pairwise Interaction Pattern in the Weighted Communication Network. , 2012, , .		1
160	Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks. Chinese Physics Letters, 2012, 29, 048903.	3.3	17
161	Interplay between collective behavior and spreading dynamics on complex networks. Chaos, 2012, 22, 043113.	2.5	19
162	The impact of awareness on epidemic spreading in networks. Chaos, 2012, 22, 013101.	2.5	189

#	Article	IF	CITATIONS
163	Phase coherence and attractor geometry of chaotic electrochemical oscillators. Chaos, 2012, 22, 033130.	2.5	23
164	Modeling the influence of information on the coevolution of contact networks and the dynamics of infectious diseases. Physica D: Nonlinear Phenomena, 2012, 241, 1512-1517.	2.8	32
165	Predicting the outcome of roulette. Chaos, 2012, 22, 033150.	2.5	11
166	Flocking of multi-agent dynamical systems based on pseudo-leader mechanism. Systems and Control Letters, 2012, 61, 195-202.	2.3	54
167	RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 1019-1046.	1.7	350
168	Binding under Conflict Conditions: State–Space Analysis of Multivariate EEG Synchronization. Journal of Cognitive Neuroscience, 2011, 23, 2363-2375.	2.3	7
169	Changing motif distributions in complex networks by manipulating rich-club connections. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4621-4626.	2.6	8
170	Emergence of scaling and assortative mixing through altruism. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2192-2197.	2.6	9
171	Staged progression model for epidemic spread on homogeneous and heterogeneous networks. Journal of Systems Science and Complexity, 2011, 24, 619.	2.8	14
172	Impact of gamma-oscillatory inhibition on the signal transmission of a cortical pyramidal neuron. Cognitive Neurodynamics, 2011, 5, 241-251.	4.0	9
173	Risk estimation of infectious diseases determines the effectiveness of the control strategy. Physica D: Nonlinear Phenomena, 2011, 240, 943-948.	2.8	31
174	Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks. Chaos, 2011, 21, 033111.	2.5	21
175	Node importance for dynamical process on networks: A multiscale characterization. Chaos, 2011, 21, 016107.	2.5	46
176	Complex networks in confined comminution. Physical Review E, 2011, 84, 021301.	2.1	10
177	Attack Resilience of the Evolving Scientific Collaboration Network. PLoS ONE, 2011, 6, e26271.	2.5	14
178	Epidemic Propagation Dynamics on Complex Networks. Interdisciplinary Mathematical Sciences, 2010, , 71-91.	0.4	0
179	Uncovering bifurcation patterns in cortical synapses. Journal of Mathematical Biology, 2010, 61, 501-526.	1.9	3
180	Parameter inference in small world network disease models with approximate Bayesian Computational methods. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 540-548.	2.6	20

#	Article	IF	CITATIONS
181	Inferring networks from multivariate symbolic time series to unravel behavioural interactions among animals. Animal Behaviour, 2010, 79, 351-359.	1.9	17
182	Complex network structure of musical compositions: Algorithmic generation of appealing music. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 126-132.	2.6	57
183	Adjusting learning motivation to promote cooperation. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 4734-4739.	2.6	26
184	Epidemic outbreaks on networks with effective contacts. Nonlinear Analysis: Real World Applications, 2010, 11, 1017-1025.	1.7	37
185	Investigation of a Unified Chaotic System and Its Synchronization by Simulations. Chinese Physics Letters, 2010, 27, 060505.	3.3	0
186	Fitness-driven deactivation in network evolution. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P12020.	2.3	2
187	OSCILLATIONS AND PHASE TRANSITION IN THE MEAN INFECTION RATE OF A FINITE POPULATION. International Journal of Modern Physics C, 2010, 21, 1207-1215.	1.7	10
188	Hub nodes inhibit the outbreak of epidemic under voluntary vaccination. New Journal of Physics, 2010, 12, 023015.	2.9	117
189	Rhythmic Dynamics and Synchronization via Dimensionality Reduction: Application to Human Gait. PLoS Computational Biology, 2010, 6, e1001033.	3.2	37
190	Enhancement of signal sensitivity in a heterogeneous neural network refined from synaptic plasticity. New Journal of Physics, 2010, 12, 083045.	2.9	16
191	Rich-club connectivity dominates assortativity and transitivity of complex networks. Physical Review E, 2010, 82, 046117.	2.1	65
192	Mapping from structure to dynamics: A unified view of dynamical processes on networks. Physical Review E, 2010, 82, 026116.	2.1	28
193	Unified framework for detecting phase synchronization in coupled time series. Physical Review E, 2009, 80, 046219.	2.1	29
194	Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance. Chaos, 2009, 19, 013126.	2.5	34
195	Revising the simple measures of assortativity in complex networks. Physical Review E, 2009, 80, 056106.	2.1	18
196	Three structural properties reflecting the synchronizability of complex networks. Physical Review E, 2009, 79, 067201.	2.1	9
197	Seeding the Kernels in graphs: toward multi-resolution community analysis. New Journal of Physics, 2009, 11, 113003.	2.9	32
198	Different Epidemic Models on Complex Networks. Communications in Theoretical Physics, 2009, 52, 180-184.	2.5	16

#	Article	IF	CITATIONS
199	Transforming Time Series into Complex Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 2078-2089.	0.3	25
200	Identifying the Topology of a Coupled FitzHugh–Nagumo Neurobiological Network via a Pinning Mechanism. IEEE Transactions on Neural Networks, 2009, 20, 1679-1684.	4.2	50
201	Composing Music with Complex Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 2196-2205.	0.3	5
202	Global behavior of epidemic transmission on heterogeneous networks via two distinct routes. Nonlinear Biomedical Physics, 2008, 2, 2.	1.5	6
203	Characterizing pseudoperiodic time series through the complex network approach. Physica D: Nonlinear Phenomena, 2008, 237, 2856-2865.	2.8	183
204	Extension of the local subspace method to enhancement of speech with colored noise. Signal Processing, 2008, 88, 1881-1888.	3.7	19
205	Generation of clusters in complex dynamical networks via pinning control. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 505101.	2.1	25
206	Superfamily phenomena and motifs of networks induced from time series. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19601-19605.	7.1	422
207	GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3495-3502.	1.7	17
208	EVIDENCE CONSISTENT WITH DETERMINISTIC CHAOS IN HUMAN CARDIAC DATA: SURROGATE AND NONLINEAR DYNAMICAL MODELING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 141-160.	1.7	16
209	Detecting phase synchronization in noisy data from coupled chaotic oscillators. Physical Review E, 2008, 77, 046213.	2.1	10
210	Feasible implementation of a prediction algorithm for the game of roulette. , 2008, , .		3
211	Pinning synchronization of delayed neural networks. Chaos, 2008, 18, 043111.	2.5	75
212	Scale-free networks which are highly assortative but not small world. Physical Review E, 2008, 77, 066112.	2.1	34
213	Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization. Physical Review E, 2008, 77, 036113.	2.1	199
214	IMPROVED PARAMETER ESTIMATION FROM NOISY TIME SERIES FOR NONLINEAR DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 1741-1752.	1.7	8
215	Detecting temporal and spatial correlations in pseudoperiodic time series. Physical Review E, 2007, 75, 016218.	2.1	32
216	Reducing colored noise for chaotic time series in the local phase space. Physical Review E, 2007, 76, 026211.	2.1	9

#	Article	IF	CITATIONS
217	Contraction stability and transverse stability of synchronization in complex networks. Physical Review E, 2007, 76, 056213.	2.1	10
218	ON A DYNAMICAL SYSTEM WITH MULTIPLE CHAOTIC ATTRACTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3235-3251.	1.7	45
219	Scale-Free Distribution of Avian Influenza Outbreaks. Physical Review Letters, 2007, 99, 188702.	7.8	86
220	From phase space to frequency domain: A time-frequency analysis for chaotic time series. Physical Review E, 2007, 76, 016220.	2.1	11
221	Deterministic and random synthesis of discrete chaos. Applied Mathematics and Computation, 2007, 192, 283-297.	2.2	18
222	Tests of the random walk hypothesis for financial data. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 599-615.	2.6	19
223	Correlation structures in short-term variabilities of stock indices and exchange rates. Physica A: Statistical Mechanics and Its Applications, 2007, 383, 96-101.	2.6	6
224	Testing for random walk. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 362, 189-197.	2.1	4
225	Estimating the distribution of dynamic invariants: illustrated with an application to human photo-plethysmographic time series. Nonlinear Biomedical Physics, 2007, 1, 8.	1.5	4
226	Minimum description length criterion for modeling of chaotic attractors with multilayer perceptron networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 722-732.	0.1	19
227	Detecting Unstable Fixed Points Using Kalman Filters With Constraints. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 2818-2827.	0.1	6
228	Detecting chaos in pseudoperiodic time series without embedding. Physical Review E, 2006, 73, 016216.	2.1	50
229	Testing for dynamics in the irregular fluctuations of financial data. Physica A: Statistical Mechanics and Its Applications, 2006, 366, 377-386.	2.6	5
230	Analysis of telephone network traffic based on a complex user network. Physica A: Statistical Mechanics and Its Applications, 2006, 368, 583-594.	2.6	14
231	Super-spreaders and the rate of transmission of the SARS virus. Physica D: Nonlinear Phenomena, 2006, 215, 146-158.	2.8	82
232	Nonlinear dynamical system identification with dynamic noise and observational noise. Physica D: Nonlinear Phenomena, 2006, 223, 54-68.	2.8	7
233	Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 2006, 96, 238701.	7.8	657
234	Inferring Epidemiological Control Strategies from Complex Network Models of Disease Propagation. , 2006, , .		0

#	Article	IF	CITATIONS
235	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	4.0	2
236	Testing for nonlinearity in irregular fluctuations with long-term trends. Physical Review E, 2006, 74, 026205.	2.1	33
237	Testing for correlation structures in short-term variabilities with long-term trends of multivariate time series. Physical Review E, 2006, 74, 041114.	2.1	7
238	APPLYING THE METHOD OF SMALL–SHUFFLE SURROGATE DATA: TESTING FOR DYNAMICS IN FLUCTUATING DATA WITH TRENDS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 3581-3603.	1.7	9
239	CHAOS INDUCEMENT AND ENHANCEMENT IN TWO PARTICULAR NONLINEAR MAPS USING WEAK PERIODIC/QUASIPERIODIC PERTURBATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 1585-1598.	1.7	2
240	A COMPARATIVE STUDY OF INFORMATION CRITERIA FOR MODEL SELECTION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2153-2175.	1.7	22
241	MODELING NONLINEAR TIME SERIES USING IMPROVED LEAST SQUARES METHOD. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 445-464.	1.7	6
242	Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment. Physica A: Statistical Mechanics and Its Applications, 2005, 351, 499-511.	2.6	65
243	Testing for nonlinearity in time series without the Fourier transform. Physical Review E, 2005, 72, 055201.	2.1	7
244	Telemetry system driven by radiation power for use in gravitational wave detectors. Review of Scientific Instruments, 2005, 76, 084503.	1.3	1
245	Scale-free user-network approach to telephone network traffic analysis. Physical Review E, 2005, 72, 026116.	2.1	16
246	Optimal phase-space projection for noise reduction. Physical Review E, 2005, 72, 046710.	2.1	7
247	EQUIVALENCE BETWEEN "FEELING THE PULSE" ON THE HUMAN WRIST AND THE PULSE PRESSURE WAVE AT FINGERTIP. International Journal of Neural Systems, 2005, 15, 277-286.	5.2	7
248	SMALL WORLD AND SCALE FREE MODEL OF TRANSMISSION OF SARS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1745-1755.	1.7	92
249	Surrogate test to distinguish between chaotic and pseudoperiodic time series. Physical Review E, 2005, 71, 026230.	2.1	29
250	Small-shuffle surrogate data: Testing for dynamics in fluctuating data with trends. Physical Review E, 2005, 72, 056216.	2.1	36
251	Optimal embedding parameters: a modelling paradigm. Physica D: Nonlinear Phenomena, 2004, 194, 283-296.	2.8	82
252	Deterministic Propagation of Blood Pressure Waveform from Human Wrists to Fingertips. Lecture Notes in Computer Science, 2004, , 142-147.	1.3	2

#	Article	IF	CITATIONS
253	Combining Local and Global Models to Capture Fast and Slow Dynamics in Time Series Data. Lecture Notes in Computer Science, 2004, , 648-653.	1.3	1
254	Detecting determinism in time series: the method of surrogate data. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 663-672.	0.1	67
255	Determinism in Financial Time Series. Studies in Nonlinear Dynamics and Econometrics, 2003, 7, .	0.3	14
256	OBSERVATION OF A PERIOD DOUBLING BIFURCATION DURING ONSET OF HUMAN VENTRICULAR FIBRILLATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 743-754.	1.7	10
257	Minimum description length neural networks for time series prediction. Physical Review E, 2002, 66, 066701.	2.1	64
258	Modeling continuous processes from data. Physical Review E, 2002, 65, 046704.	2.1	16
259	A Surrogate Test for Pseudo-periodic Time Series Data. AIP Conference Proceedings, 2002, , .	0.4	7
260	Uncovering non-linear structure in human ECG recordings. Chaos, Solitons and Fractals, 2002, 13, 1755-1762.	5.1	47
261	Applying the method of surrogate data to cyclic time series. Physica D: Nonlinear Phenomena, 2002, 164, 187-201.	2.8	71
262	TEMPORAL EVOLUTION OF NONLINEAR DYNAMICS IN VENTRICULAR ARRHYTHMIA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2531-2548.	1.7	8
263	Surrogate Test for Pseudoperiodic Time Series Data. Physical Review Letters, 2001, 87, .	7.8	134
264	Testing Time Series for Nonlinearity. Statistics and Computing, 2001, 11, 257-268.	1.5	10
265	Variation in the dominant period during ventricular fibrillation. IEEE Transactions on Biomedical Engineering, 2001, 48, 1056-1061.	4.2	4
266	NON-STATIONARITY AS AN EMBEDDING PROBLEM. , 2001, , .		4
267	Measuring temporal complexity of ventricular fibrillation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 265, 68-75.	2.1	22
268	Towards long-term prediction. Physica D: Nonlinear Phenomena, 2000, 136, 31-44.	2.8	42
269	Deterministic nonlinearity in ventricular fibrillation. Chaos, 2000, 10, 268-277.	2.5	50
270	Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data. Physical Review E, 2000, 61, 3750-3756.	2.1	63

#	Article	IF	CITATIONS
271	Is breathing in infants chaotic? Dimension estimates for respiratory patterns during quiet sleep. Journal of Applied Physiology, 1999, 86, 359-376.	2.5	80
272	Detecting periodicity in experimental data using linear modeling techniques. Physical Review E, 1999, 59, 1379-1385.	2.1	31
273	Nonlinear dynamics in infant respiration. Bulletin of the Australian Mathematical Society, 1999, 60, 345-347.	0.5	1
274	Comparisons of new nonlinear modeling techniques with applications to infant respiration. Physica D: Nonlinear Phenomena, 1998, 117, 283-298.	2.8	47
275	Correlation dimension: A pivotal statistic for non-constrained realizations of composite hypotheses in surrogate data analysis. Physica D: Nonlinear Phenomena, 1998, 120, 386-400.	2.8	41
276	Detecting Nonlinearity in Experimental Data. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 1231-1244.	1.7	29
277	Linear and nonlinear characteristics of ECG signals produced by simulations of ventricular tachyarrhythmias. , 0, , .		1
278	Chaotic dynamics and simulation of Japanese vowel sounds. , 0, , .		4
279	Network using Michaelis–Menten kinetics: constructing an algorithm to find target genes from expression data. Journal of Complex Networks, 0, , .	1.8	1