
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sinterâ€Crystallization and Optical Characterization of Dy ³⁺ : ZnOâ€B ₂ O ₃ â€RHA Glassâ€Ceramics. Macromolecular Symposia, 2022, 401, 2100316.	0.4	1
2	Synthesis of MoS 2 Layers on GaN Using Ammonium Tetrathiomolybdate for Heterojunction Device Applications. Crystal Research and Technology, 2021, 56, 2000198.	0.6	3
3	Recent Developments in Carbon Nanotubes-Reinforced Ceramic Matrix Composites: A Review on Dispersion and Densification Techniques. Crystals, 2021, 11, 457.	1.0	13
4	The role of solid, liquid and gaseous hydrocarbon precursors on chemical vapor deposition grown carbon nanomaterials' growth temperature. Synthetic Metals, 2021, 274, 116735.	2.1	16
5	Trifunctional Electrocatalytic Activities of Nitrogenâ€Doped Graphitic Carbon Nanofibers Synthesized by Chemical Vapor Deposition. ChemistrySelect, 2021, 6, 4867-4873.	0.7	8
6	Tuning the optical bandgap of multi-walled carbon nanotube-modified zinc silicate glass-ceramic composites. Ceramics International, 2021, 47, 20108-20116.	2.3	7
7	Waste NR Latex Based-Precursors as Carbon Source for CNTs Eco-Fabrications. Polymers, 2021, 13, 3409.	2.0	3
8	Influence on Electrochemical Reactivity and Synthesis of Stainless Steel/Nitrogen-Doped Carbon Nanofibers. Journal of Physical Chemistry C, 2021, 125, 25197-25206.	1.5	2
9	Room-temperature graphitization in a solid-phase reaction. RSC Advances, 2020, 10, 914-922.	1.7	4
10	Growth of uniform MoS2 layers on free-standing GaN semiconductor for vertical heterojunction device application. Journal of Materials Science: Materials in Electronics, 2020, 31, 2040-2048.	1.1	11
11	Output density quantification of electricity generation by flowing deionized water on graphene. Applied Physics Letters, 2020, 117, .	1.5	8
12	Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials, 2020, 10, 1483.	1.9	9
13	Graphitization of Galliumâ€Incorporated Carbon Nanofibers and Cones: In Situ and Ex Situ Transmission Electron Microscopy Studies. Physica Status Solidi (B): Basic Research, 2020, 257, 2000309.	0.7	3
14	One-step synthesis of spontaneously graphitized nanocarbon using cobalt-nanoparticles. SN Applied Sciences, 2020, 2, 1.	1.5	3
15	Influence of the Natural Zeolite Particle Size Toward the Ammonia Adsorption Activity in Ceramic Hollow Fiber Membrane. Membranes, 2020, 10, 63.	1.4	17
16	Temperature dependence of catalytic activity in graphene synthesis for Sn nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 12796-12803.	1.1	1
17	Influence of MoS 2 â€&ilicon Interface States on Spectral Photoresponse Characteristics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900349.	0.8	5
18	Formation of Effective Culâ€GaN Heterojunction with Excellent Ultraviolet Photoresponsive Photovoltage. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900200.	0.8	5

#	Article	IF	CITATIONS
19	Ultraviolet light induced electrical hysteresis effect in graphene-GaN heterojunction. Applied Physics Letters, 2019, 114, .	1.5	18
20	Low temperature wafer-scale synthesis of hexagonal boron nitride by microwave assisted surface wave plasma chemical vapour deposition. AIP Advances, 2019, 9, .	0.6	18
21	Observing Charge Transfer Interaction in Cul and MoS ₂ Heterojunction for Photoresponsive Device Application. ACS Applied Electronic Materials, 2019, 1, 302-310.	2.0	13
22	The Mo catalyzed graphitization of amorphous carbon: an <i>in situ</i> TEM study. RSC Advances, 2019, 9, 34377-34381.	1.7	5
23	Effects of nitrogen-dopant bonding states on liquid-flow-induced electricity generation of graphene: A comparative study. Results in Physics, 2019, 12, 1291-1293.	2.0	4
24	Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Applied Physics Letters, 2018, 112, .	1.5	16
25	Chemical state analysis using Auger parameters for XPS spectrum curve fitted with standard Auger spectra. Surface and Interface Analysis, 2018, 50, 1187-1190.	0.8	8
26	Synthesis of Freestanding WS ₂ Trees and Fibers on Au by Chemical Vapor Deposition (CVD). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700566.	0.8	4
27	Development of oxide nanofiber–tipped cantilever as a substrate for crossâ€sectional transmission electron microscopy analysis. Surface and Interface Analysis, 2018, 50, 1122-1126.	0.8	2
28	Photovoltaic Action in Graphene–Ga ₂ O ₃ Heterojunction with Deepâ€Ultraviolet Irradiation. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800198.	1.2	26
29	Schottky Barrier Diode Characteristics of Graphene-GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800089.	0.8	12
30	Switching isotropic and anisotropic graphene growth in a solid source CVD system. CrystEngComm, 2018, 20, 5356-5363.	1.3	8
31	Role of Doped Nitrogen in Graphene for Flowâ€Induced Power Generation. Advanced Engineering Materials, 2018, 20, 1800387.	1.6	16
32	Photovoltaic Action With Broadband Photoresponsivity in Germanium-MoS ₂ Ultrathin Heterojunction. IEEE Transactions on Electron Devices, 2018, 65, 4434-4440.	1.6	24
33	Transfer free graphene growth on SiO2 substrate at 250 °C. Scientific Reports, 2017, 7, 43756.	1.6	41
34	Graphene formation at 150°C using indium as catalyst. RSC Advances, 2017, 7, 47353-47356.	1.7	9
35	Encapsulation of transition metal dichalcogenides crystals with room temperature plasma deposited carbonaceous films. RSC Advances, 2017, 7, 41136-41143.	1.7	2
36	Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction. Applied Physics Letters, 2017, 111, .	1.5	27

#	Article	IF	CITATIONS
37	In situ fabrication of graphene from a copper–carbon nanoneedle and its electrical properties. RSC Advances, 2016, 6, 82459-82466.	1.7	5
38	Synthesis of uniform monolayer graphene on re-solidified copper from waste chicken fat by low pressure chemical vapor deposition. Materials Research Bulletin, 2016, 83, 573-580.	2.7	25
39	Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohydrate Polymers, 2016, 146, 166-173.	5.1	63
40	Roomâ€ŧemperature growth of ionâ€induced Si―and Geâ€incorporated carbon nanofibers. Physica Status Solidi (B): Basic Research, 2015, 252, 1345-1349.	0.7	10
41	Fabrication of transparent and flexible carbon-doped ZnO field emission display on plastic substrate. Physica Status Solidi - Rapid Research Letters, 2015, 9, 145-148.	1.2	15
42	In situ transmission electron microscopy of Ag-incorporated carbon nanofibers: the effect of Ag nanoparticle size on graphene formation. RSC Advances, 2015, 5, 5647-5651.	1.7	9
43	Low Temperature Direct of Graphene onto Metal Nanoâ€6pindt Tip with Applications in Electron Emission. Advanced Materials Interfaces, 2014, 1, 1300147.	1.9	11
44	Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 2014, 72, 66-73.	5.4	136
45	Effect of surface morphology on the field emission property of ZnO films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1349-1352.	0.8	1
46	Highly transparent and conducting C:ZnO thin film for field emission displays. RSC Advances, 2014, 4, 64763-64770.	1.7	31
47	The controlled fabrication of "Tip-On-Tip―TERS probes. RSC Advances, 2014, 4, 4718-4722.	1.7	12
48	Direct observation of structural change in Au-incorporated carbon nanofibers during field emission process. Carbon, 2014, 75, 277-280.	5.4	16
49	Visualizing copper assisted graphene growth in nanoscale. Scientific Reports, 2014, 4, 7563.	1.6	16
50	Conducting polymer based hybrid structure as transparent and flexible field electron emitter. Physica Status Solidi - Rapid Research Letters, 2013, 7, 489-492.	1.2	2
51	Highly transparent and flexible field electron emitters based on hybrid carbon nanostructure. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1080-1083.	1.2	2
52	Facile oneâ€step fabrication of highly transparent and flexible superhydrophobic substrate by roomâ€ŧemperature ion irradiation method. Physica Status Solidi - Rapid Research Letters, 2012, 6, 430-432.	1.2	3
53	<i>In Situ</i> TEM Observation of Fe-Included Carbon Nanofiber: Evolution of Structural and Electrical Properties in Field Emission Process. ACS Nano, 2012, 6, 9567-9573.	7.3	31
54	Effect of defects in ferromagnetic C doped ZnO thin films. Physica Status Solidi (B): Basic Research, 2012, 249, 1254-1257.	0.7	19

#	Article	IF	CITATIONS
55	Controllable fabrication and characterization of conical nanocarbon structures on polymer substrate for transparent and flexible field emission displays. Physica Status Solidi - Rapid Research Letters, 2012, 6, 184-186.	1.2	3
56	Transparent and flexible field emission display device based on singleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2012, 6, 303-305.	1.2	9
57	Fabrication of Ion-Induced Carbon-Cobalt Nanocomposite Fibers: Effect of Cobalt Supply Rate. Journal of Nanoscience and Nanotechnology, 2011, 11, 10677-10681.	0.9	4
58	Determination of Young's modulus of carbon nanofiber probes fabricated by the argon ion bombardment of carbon coated silicon cantilever. Carbon, 2011, 49, 4191-4196.	5.4	14
59	High-Resolution Imaging of Plasmid DNA in Liquids in Dynamic Mode Atomic Force Microscopy Using a Carbon Nanofiber Tip. Japanese Journal of Applied Physics, 2011, 50, 08LB14.	0.8	5
60	Preparation and catalytic evaluation of cytochrome c immobilized on mesoporous silica materials. Journal of the Ceramic Society of Japan, 2010, 118, 410-416.	0.5	25
61	Fabrication of well ordered Zn nanorod arrays by ion irradiation method at room temperature and effect on crystal orientations. , 2010, , .		Ο
62	Quantum limits to the electron field emission from tapered conductive sheets. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2A64-C2A71.	0.6	2
63	Ferromagnetic and Optical Properties of Partially Cu-Doped ZnO Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 765-768.	0.7	3
64	Ferromagnetism in Cu-doped AlN films. Applied Physics Letters, 2009, 95, .	1.5	55
65	Application of ion-induced carbon nanocomposite fibers to magnetic force microscope probes. Journal of Vacuum Science & Technology B, 2009, 27, 980.	1.3	7
66	Wafer-scale production of carbon nanofiber probes. Journal of Vacuum Science & Technology B, 2009, 27, 975.	1.3	12
67	Roomâ€ŧemperature ferromagnetism of Cuâ€doped ZnO films deposited by helicon magnetron sputtering. Physica Status Solidi (B): Basic Research, 2009, 246, 1243-1247.	0.7	14
68	Quantum limits to the electron field emission from tapered conductive sheets. , 2009, , .		0
69	Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. Applied Physics Letters, 2007, 90, 013107.	1.5	74
70	Room-temperature growth of carbon nanofibers on plastic substrates. Surface Science, 2006, 600, 3663-3667.	0.8	29
71	Direct Growth of Single Carbon Nanofiber onto Tip of Scanning Probe Microscopy Induced by Ion Irradiation. Japanese Journal of Applied Physics, 2006, 45, 2004-2008.	0.8	40
72	Angular Distribution of Sputtered Ions from HfN by Ar+ Ion Bombarment. Hyomen Kagaku, 2005, 26, 449-453.	0.0	2

#	Article	IF	CITATIONS
73	Room-temperature growth of a carbon nanofiber on the tip of conical carbon protrusions. Applied Physics Letters, 2004, 84, 3831-3833.	1.5	65