Bertrand Blondeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807191/publications.pdf

Version: 2024-02-01

19 1,424 16 20 papers citations h-index g-index

20 20 20 2730 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 623.	4.1	89
2	Adaptive β-Cell Neogenesis in the Adult Mouse in Response to Glucocorticoid-Induced Insulin Resistance. Diabetes, 2019, 68, 95-108.	0.6	24
3	Humanized Mouse Model to Study Type 1 Diabetes. Diabetes, 2018, 67, 1816-1829.	0.6	20
4	Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes. Scientific Reports, 2017, 7, 45625.	3.3	8
5	Glucagon actions on the kidney revisited: possible role in potassium homeostasis. American Journal of Physiology - Renal Physiology, 2016, 311, F469-F486.	2.7	32
6	Inhibition of the Inflammasome NLRP3 by Arglabin Attenuates Inflammation, Protects Pancreatic Â-Cells from Apoptosis, and Prevents Type 2 Diabetes Mellitus Development in ApoE2Ki Mice on a Chronic High-Fat Diet. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 487-494.	2.5	41
7	NOV/CCN3: A New Adipocytokine Involved in Obesity-Associated Insulin Resistance. Diabetes, 2016, 65, 2502-2515.	0.6	48
8	Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells. PLoS ONE, 2016, 11, e0149343.	2.5	9
9	Glucose Tolerance Is Improved in Mice Invalidated for the Nuclear Receptor HNF-4γ: A Critical Role for Enteroendocrine Cell Lineage. Diabetes, 2015, 64, 2744-2756.	0.6	21
10	Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation. PLoS ONE, 2015, 10, e0134654.	2.5	26
11	Fetal PGC-1α Overexpression Programs Adult Pancreatic β-Cell Dysfunction. Diabetes, 2013, 62, 1206-1216.	0.6	42
12	\hat{l}^2 - and \hat{l} ±-Cell Dysfunctions in Africans With Ketosis-Prone Atypical Diabetes During Near-Normoglycemic Remission. Diabetes Care, 2013, 36, 118-123.	8.6	32
13	Developmental programming of neonatal pancreatic \hat{l}^2 -cells by a maternal low-protein diet in rats involves a switch from proliferation to differentiation. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1431-E1439.	3.5	41
14	Novel Transgenic Mice for Inducible Gene Overexpression in Pancreatic Cells Define Glucocorticoid Receptor-Mediated Regulations of Beta Cells. PLoS ONE, 2012, 7, e30210.	2.5	25
15	Specific Control of Pancreatic Endocrine \hat{l}^2 - and \hat{l} -Cell Mass by Class IIa Histone Deacetylases HDAC4, HDAC5, and HDAC9. Diabetes, 2011, 60, 2861-2871.	0.6	119
16	Ketosis-Prone Type 2 Diabetes Mellitus and <emph type="ital">Human Herpesvirus 8</emph> Infection in Sub-Saharan Africans. JAMA - Journal of the American Medical Association, 2008, 299, 2770.	7.4	90
17	Potential Role of Glucocorticoid Signaling in the Formation of Pancreatic Islets in the Human Fetus. Pediatric Research, 2008, 64, 346-351.	2.3	16
18	Maternal stress alters endocrine function of the feto-placental unit in rats. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1526-E1533.	3.5	315

#	ARTICLE	IF	CITATIONS
19	Deletion of PPAR \hat{I}^3 in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6207-6212.	7.1	424