
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1807156/publications.pdf Version: 2024-02-01

FUDONCLUL

#	Article	IF	CITATIONS
1	Alkaliâ€Metalâ€Promoted Pt/TiO ₂ Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. Angewandte Chemie - International Edition, 2012, 51, 9628-9632.	7.2	611
2	Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2009, 93, 194-204.	10.8	579
3	A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115-116, 100-106.	10.8	562
4	Novel cerium–tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Communications, 2011, 47, 8046.	2.2	335
5	Structureâ^'Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Journal of Physical Chemistry C, 2010, 114, 16929-16936.	1.5	304
6	Excellent Performance of One-Pot Synthesized Cu-SSZ-13 Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Science & Technology, 2014, 48, 566-572.	4.6	264
7	Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization. Applied Catalysis B: Environmental, 2010, 96, 408-420.	10.8	258
8	Environmentally-benign catalysts for the selective catalytic reduction of NO _x from diesel engines: structure–activity relationship and reaction mechanism aspects. Chemical Communications, 2014, 50, 8445-8463.	2.2	248
9	Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2011, 103, 369-377.	10.8	245
10	Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical Engineering Journal, 2014, 250, 390-398.	6.6	238
11	Respective Role of Fe and Mn Oxide Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-ray Absorption Spectroscopy Investigation. Environmental Science & Technology, 2014, 48, 10316-10322.	4.6	200
12	Significant Promotion Effect of Mo Additive on a Novel Ce–Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ACS Applied Materials & Interfaces, 2015, 7, 9497-9506.	4.0	186
13	Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study. Catalysis Today, 2010, 153, 70-76.	2.2	183
14	The smart surface modification of Fe2O3 by WO for significantly promoting the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2018, 230, 165-176.	10.8	182
15	Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catalysis Today, 2011, 175, 18-25.	2.2	170
16	An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NO with NH3 in simulated diesel exhaust. Catalysis Today, 2012, 184, 160-165.	2.2	163
17	Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO with NH3 over CeZrO catalyst. Applied Catalysis B: Environmental, 2016, 180, 766-774.	10.8	158
18	Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2013, 307, 340-351.	3.1	149

#	Article	IF	CITATIONS
19	The Effects of Mn ²⁺ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts. Journal of Physical Chemistry C, 2015, 119, 23119-23126.	1.5	144
20	Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range. Chemical Communications, 2008, , 2043.	2.2	140
21	Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catalysis Science and Technology, 2013, 3, 2699.	2.1	140
22	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nature Communications, 2015, 6, 6957.	5.8	133
23	Effect of Fe on the photocatalytic removal of NO over visible light responsive Fe/TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 179, 21-28.	10.8	124
24	The use of ceria for the selective catalytic reduction of NOx with NH3. Chinese Journal of Catalysis, 2014, 35, 1251-1259.	6.9	121
25	High hydrothermal stability of Cu–SAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering Journal, 2016, 294, 254-263.	6.6	121
26	Inhibitory effect of NO2 on the selective catalytic reduction of NOx with NH3 over one-pot-synthesized Cu–SSZ-13 catalyst. Catalysis Science and Technology, 2014, 4, 1104.	2.1	119
27	NH ₃ -SCR Performance of Fresh and Hydrothermally Aged Fe-ZSM-5 in Standard and Fast Selective Catalytic Reduction Reactions. Environmental Science & Technology, 2013, 47, 3293-3298.	4.6	108
28	Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu–SSZ-13 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2015, 179, 206-212.	10.8	105
29	The Remarkable Improvement of a CeTi based Catalyst for NO _{<i>x</i>} Abatement, Prepared by a Homogeneous Precipitation Method. ChemCatChem, 2011, 3, 1286-1289.	1.8	103
30	Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Catalysis Today, 2011, 164, 520-527.	2.2	98
31	Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. Applied Catalysis B: Environmental, 2013, 142-143, 72-79.	10.8	93
32	Enhanced Activity of Ti-Modified V ₂ O ₅ /CeO ₂ Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Industrial & Engineering Chemistry Research, 2014, 53, 19506-19511.	1.8	88
33	One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. Journal of Hazardous Materials, 2020, 385, 121593.	6.5	87
34	Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green Energy and Environment, 2023, 8, 654-672.	4.7	82
35	Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose, 2013, 20, 127-134.	2.4	81
36	Promotional Effects of Ti on a CeO ₂ –MoO ₃ Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ACS Applied Materials & Interfaces, 2017, 9, 16951-16958.	4.0	78

#	Article	IF	CITATIONS
37	Effect of V ₂ O ₅ Additive on the SO ₂ Resistance of a Fe ₂ O ₃ /AC Catalyst for NH ₃ -SCR of NO _{<i>x</i>} at Low Temperatures. Industrial & Engineering Chemistry Research, 2016, 55, 2677-2685.	1.8	75
38	DRIFTS study of a Ce–W mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Catalysis Science and Technology, 2015, 5, 2290-2299.	2.1	74
39	Nanostructured MoO3 for Efficient Energy and Environmental Catalysis. Molecules, 2020, 25, 18.	1.7	74
40	Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal. Journal of Hazardous Materials, 2020, 388, 121729.	6.5	72
41	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	4.6	66
42	Nature of Ag Species on Ag/γ-Al ₂ O ₃ : A Combined Experimental and Theoretical Study. ACS Catalysis, 2014, 4, 2776-2784.	5.5	64
43	Adsorption-Induced Active Vanadium Species Facilitate Excellent Performance in Low-Temperature Catalytic NO _{<i>x</i>} Abatement. Journal of the American Chemical Society, 2021, 143, 10454-10461.	6.6	64
44	A highly efficient CeWO _x catalyst for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2016, 6, 1195-1200.	2.1	63
45	Specific Metal–Support Interactions between Nanoparticle Layers for Catalysts with Enhanced Methanol Oxidation Activity. ACS Catalysis, 2018, 8, 5391-5398.	5.5	63
46	Dramatically Different Kinetics and Mechanism at Solid/Liquid and Solid/Gas Interfaces for Catalytic Isopropanol Oxidation over Size-Controlled Platinum Nanoparticles. Journal of the American Chemical Society, 2014, 136, 10515-10520.	6.6	60
47	A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for Formaldehyde Oxidation at Ambient Temperature. ACS Catalysis, 2021, 11, 456-465.	5.5	60
48	Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere, 2007, 66, 145-150.	4.2	59
49	Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect. Journal of Hazardous Materials, 2020, 398, 122986.	6.5	58
50	Adjustment of operation temperature window of Mn-Ce oxide catalyst for the selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2021, 405, 124223.	6.5	55
51	Improvement of Nb Doping on SO ₂ Resistance of VO _{<i>x</i>} /CeO ₂ Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Journal of Physical Chemistry C, 2017, 121, 7803-7809.	1.5	53
52	Elucidating the Nature of the Cu(I) Active Site in CuO/TiO ₂ for Excellent Low-Temperature CO Oxidation. ACS Applied Materials & amp; Interfaces, 2020, 12, 7091-7101.	4.0	51
53	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	5.5	48
54	Comparing the Catalytic Oxidation of Ethanol at the Solid–Gas and Solid–Liquid Interfaces over Size-Controlled Pt Nanoparticles: Striking Differences in Kinetics and Mechanism. Nano Letters, 2014, 14, 6727-6730.	4.5	45

#	Article	IF	CITATIONS
55	Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3. Journal of Environmental Sciences, 2019, 81, 195-204.	3.2	45
56	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	6.5	43
57	Effect of Doping Metals on OMS-2/γ-Al ₂ O ₃ Catalysts for Plasma-Catalytic Removal of <i>o</i> -Xylene. Journal of Physical Chemistry C, 2016, 120, 6136-6144.	1.5	40
58	Effect of preparation methods on the activity of VO _x /CeO ₂ catalysts for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2015, 5, 389-396.	2.1	37
59	High-efficiency reduction of NO emission from diesel exhaust using a CeWO catalyst. Catalysis Communications, 2015, 59, 226-228.	1.6	36
60	Effect of CeO ₂ for a high-efficiency CeO ₂ /WO ₃ –TiO ₂ catalyst on N ₂ O formation in NH ₃ -SCR: a kinetic study. Catalysis Science and Technology, 2016, 6, 3149-3155.	2.1	36
61	Effects of Nanoparticle Size and Metal/Support Interactions in Pt-Catalyzed Methanol Oxidation Reactions in Gas and Liquid Phases. Catalysis Letters, 2014, 144, 1930-1938.	1.4	34
62	Nb-doped VO _x /CeO ₂ catalyst for NH ₃ -SCR of NO _x at low temperatures. RSC Advances, 2015, 5, 37675-37681.	1.7	33
63	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie - International Edition, 2021, 60, 18309-18317.	7.2	32
64	XAFS Study on the Specific Deoxidation Behavior of Iron Titanate Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>) sub> with NH₃. ChemCatChem, 2013, 5, 3760-3769.}	1.8	31
65	Improved and Reduced Performance of Cu- and Ni-Substituted Co ₃ O ₄ Catalysts with Varying Co _{Oh} /Co _{Td} and Co ³⁺ /Co ²⁺ Ratios for the Complete Catalytic Oxidation of VOCs. Environmental Science & amp; Technology, 2022, 56. 9751-9761.	4.6	31
66	Deactivation Effects of Potassium on a CeMoTiO _{<i>x</i>Catalytic Reduction of NO_{<i>x</i>} with NH₃. Industrial & Engineering Chemistry Research, 2018, 57, 1399-1407.}	1.8	30
67	Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal, 2021, 426, 131855.	6.6	30
68	Highly Active and Stable Palladium Catalysts on Novel Ceria–Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environmental Science & Technology, 2021, 55, 7624-7633.	4.6	28
69	Tuning Singleâ€atom Pt ₁ â~CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	1.5	27
70	Hydrothermal Deactivation of Fe-ZSM-5 Prepared by Different Methods for the Selective Catalytic Reduction of NOx with NH3. Chinese Journal of Catalysis, 2012, 33, 454-464.	6.9	26
71	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials, 2018, 353, 340-347.	6.5	26
72	An XAFS study on the specific microstructure of active species in iron titanate catalyst for NH3-SCR of NOx. Catalysis Today, 2013, 201, 131-138.	2.2	25

#	Article	IF	CITATIONS
73	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	1.3	24
74	Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal–Support Interaction. ACS Applied Materials & Interfaces, 2020, 12, 31467-31476.	4.0	24
75	W-Modified Mn–Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO with NH ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9112-9119.	1.8	23
76	Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. Journal of Catalysis, 2022, 405, 236-248.	3.1	23
77	Effects of Adding CeO2 to Ag/Al2O3 Catalyst for Ammonia Oxidation at Low Temperatures. Chinese Journal of Catalysis, 2011, 32, 727-735.	6.9	22
78	The effect of Ce on a high-efficiency CeO ₂ /WO ₃ –TiO ₂ catalyst for the selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2016, 6, 64803-64810.	1.7	21
79	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	4.6	21
80	Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles. Chinese Journal of Catalysis, 2014, 35, 1438-1445.	6.9	19
81	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	2.2	19
82	Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration. Journal of Physical Chemistry C, 2017, 121, 7365-7371.	1.5	18
83	Engineering Platinum Catalysts <i>via</i> a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. Environmental Science & Technology, 2022, 56, 9672-9682.	4.6	17
84	Molecular Orientations Change Reaction Kinetics and Mechanism: A Review on Catalytic Alcohol Oxidation in Gas Phase and Liquid Phase on Size-Controlled Pt Nanoparticles. Catalysts, 2018, 8, 226.	1.6	16
85	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction. Small, 2022, 18, e2107799.	5.2	13
86	Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catalysis Today, 2022, 402, 149-160.	2.2	12
87	U.S.–China Collaboration is Vital to Clobal Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	4.6	10
88	Role of aggregated Fe oxo species in N2O decomposition over Fe/ZSM-5. Chinese Journal of Catalysis, 2014, 35, 1972-1981.	6.9	9
89	A direct sulfation method for introducing the transition metal cation Co2+ into ZrO2 with little change in the BrĂ,nsted acid sites. Journal of Catalysis, 2011, 279, 301-309.	3.1	8
90	Catalytic 1-Propanol Oxidation on Size-Controlled Platinum Nanoparticles at Solid–Gas and Solid–Liquid Interfaces: Significant Differences in Kinetics and Mechanisms. Journal of Physical Chemistry C, 2019, 123, 7577-7583.	1.5	8

#	Article	IF	CITATIONS
91	Promotion Effect of Fe Species on SO ₂ Resistance of Cu-SSZ-13 Catalysts for NO <i>_x</i> Reduction by NH ₃ . Industrial & Engineering Chemistry Research, 2022, 61, 8698-8707.	1.8	8
92	Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity. Angewandte Chemie, 2021, 133, 18457-18465.	1.6	7
93	Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catalysis Science and Technology, 2022, 12, 3804-3816.	2.1	7
94	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	5.8	7
95	Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts, 2021, 11, 165.	1.6	6
96	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	5
97	Research Progress in Vanadium-Free Catalysts for the Selective Catalytic Re-duction of NO with NH3. Chinese Journal of Catalysis, 2014, 32, 1113-1128.	6.9	4
98	Environmental-friendly catalysts for the selective catalytic reduction of NO _{<italic>x</italic>} . Scientia Sinica Chimica, 2012, 42, 446-468.	0.2	3
99	General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Singleâ€Atom Metal Sites for Electrochemical CO ₂ Reduction (Small 16/2022). Small, 2022, 18, .	5.2	3
100	Role of active metals Cu, Co, and Ni on ceria towards CO2 thermo-catalytic hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 699-711.	0.8	2
101	柴油车尾æ°"䏿°®æ°§åŒ–物的å,¬åŒ–净化. Chinese Science Bulletin, 2014, 59, 2540-2549.	0.4	2
102	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	2.2	1
103	Emerging Applications of Environmentally Friendly Zeolites in the Selective Catalytic Reduction of Nitrogen Oxides. Green Chemistry and Sustainable Technology, 2016, , 393-434.	0.4	0
104	Catalysis and Nanomaterials for Sustainable Energy, Environment, and Industry: Special Issue for World Chemistry Forum 2019, Barcelona, Spain. Topics in Catalysis, 2020, 63, 777-777.	1.3	0