

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1806998/publications.pdf Version: 2024-02-01

		30070	23533
149	13,247	54	111
papers	citations	h-index	g-index
151 all docs	151 docs citations	151 times ranked	16197 citing authors

#	Article	IF	CITATIONS
1	Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano Materials Science, 2023, 5, 189-201.	8.8	32
2	Rational design of Prussian blue analogues as conversion anodes for lithium-ion batteries with high capacity and long cycle life. Journal of Alloys and Compounds, 2022, 891, 161867.	5.5	22
3	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	13.7	103
4	Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials. Carbon, 2022, 190, 412-421.	10.3	24
5	Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 2513-2521.	11.2	38
6	Pollution to solution: A universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catalysis, 2022, 2, 622-638.	6.1	27
7	Synergetic V ₂ O ₅ ·3H ₂ O/Metallic VS ₂ Nanocomposites Endow a Long Life and High Rate Capability to Aqueous Zinc-Ion Batteries. Energy & Fuels, 2022, 36, 3319-3327.	5.1	6
8	A descriptor for the structural stability of organic–inorganic hybrid perovskites based on binding mechanism in electronic structure. Journal of Molecular Modeling, 2022, 28, 80.	1.8	8
9	Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes. Nano Research, 2022, 15, 5517-5526.	10.4	7
10	Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. Chinese Journal of Catalysis, 2022, 43, 1238-1246.	14.0	6
11	Graphitic carbon from catalytic methane decomposition as efficient conductive additives for zinc-carbon batteries. Carbon, 2022, 192, 84-92.	10.3	10
12	Bifunctional catalysts for heterogeneous electro-Fenton processes: a review. Environmental Chemistry Letters, 2022, 20, 3837-3859.	16.2	22
13	Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage. Chemical Engineering Journal, 2021, 406, 126133.	12.7	38
14	Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications. Journal of Alloys and Compounds, 2021, 850, 156770.	5.5	29
15	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	14.6	79
16	Biomass-derived tubular carbon materials: progress in synthesis and applications. Journal of Materials Chemistry A, 2021, 9, 13822-13850.	10.3	31
17	lonic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm. Applied Physics Letters, 2021, 118, .	3.3	5
18	Flexible Freeâ€Standing VO ₂ /MXene Conductive Films as Cathodes for Quasiâ€Solidâ€State Zincâ€Ion Batteries. ChemElectroChem, 2021, 8, 1091-1097.	3.4	31

#	Article	IF	CITATIONS
19	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	10.0	35
20	High-performance Fe–N–C electrocatalysts with a "chain mail―protective shield. Nano Materials Science, 2021, 3, 420-428.	8.8	9
21	High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chemical Engineering Journal, 2021, 415, 129003.	12.7	17
22	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453.	5.0	15
23	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	19.1	59
24	Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Applied Catalysis B: Environmental, 2021, 288, 120034.	20.2	130
25	Novel antimony phosphate loaded on grid-like N, S-doped carbon for facilitating sodium-ion storage. Chemical Engineering Journal, 2021, 415, 128942.	12.7	13
26	Robust hetero-MoO3/MoO2@N-doped carbon nanobelts decorated with oxygen deficiencies as high-performance anodes for potassium/sodium storage. Journal of Colloid and Interface Science, 2021, 599, 730-740.	9.4	30
27	Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting. Chemical Engineering Journal, 2021, 422, 130062.	12.7	24
28	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	19.5	94
29	Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction. ACS Applied Materials & amp; Interfaces, 2021, 13, 6276-6285.	8.0	18
30	Degradation: A critical challenge for M–N–C electrocatalysts. Journal of Energy Chemistry, 2021, 63, 667-674.	12.9	21
31	One-dimensional covalent organic framework—Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	3.3	9
32	Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 2020, 25, 585-612.	18.0	181
33	1D Supercapacitors for Emerging Electronics: Current Status and Future Directions. Advanced Materials, 2020, 32, e1902387.	21.0	158
34	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€Temperature Adaptability. Angewandte Chemie - International Edition, 2020, 59, 4793-4799.	13.8	217
35	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€Temperature Adaptability. Angewandte Chemie, 2020, 132, 4823-4829.	2.0	57
36	Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices. ACS Nano, 2020, 14, 2709-2717.	14.6	19

#	Article	IF	CITATIONS
37	Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting. Journal of Membrane Science, 2020, 597, 117765.	8.2	29
38	Thiocyanate-Modified Silver Nanofoam for Efficient CO ₂ Reduction to CO. ACS Catalysis, 2020, 10, 1444-1453.	11.2	51
39	Lamellar V ₅ O ₁₂ ·6H ₂ O Nanobelts Coupled with Inert Zn(OH) ₂ ·0.5H ₂ O as Cathode for Aqueous Zn ²⁺ /Nonaqueous Na ⁺ Storage Applications. Energy Technology, 2020, 8, 1901105.	3.8	12
40	A Durable Na _{0.56} V ₂ O ₅ Nanobelt Cathode Material Assisted by Hybrid Cationic Electrolyte for Highâ€Performance Aqueous Zincâ€Ion Batteries. ChemElectroChem, 2020, 7, 283-288.	3.4	66
41	Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage. Applied Surface Science, 2020, 534, 147608.	6.1	23
42	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	19.5	47
43	A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Materials, 2020, 32, 448-457.	18.0	103
44	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	30.8	225
45	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
46	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	10.0	196
47	Dualâ€Template Pore Engineering of Whey Powderâ€Derived Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst for Primary Zincâ€Air Battery. Chemistry - an Asian Journal, 2020, 15, 1881-1889.	3.3	3
48	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43
49	Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 2020, 319, 128243.	7.8	46
50	Viscosity sensitive near-infrared fluorescent probes based on functionalized single-walled carbon nanotubes. Chemical Communications, 2020, 56, 8301-8304.	4.1	11
51	Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000193.	2.4	5
52	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	10.3	41
53	Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon, 2020, 162, 365-374.	10.3	23
54	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Materials, 2020, 28, 55-63.	18.0	85

Li Wei

#	Article	IF	CITATIONS
55	Drying graphene hydrogel fibers for capacitive energy storage. Carbon, 2020, 164, 100-110.	10.3	43
56	Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. Journal of Materials Chemistry A, 2020, 8, 9713-9725.	10.3	46
57	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	12.8	225
58	Flexible Zincâ€ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	10.0	143
59	Mosaic Red Phosphorus/MoS ₂ Hybrid as an Anode to Boost Potassiumâ€lon Storage. ChemElectroChem, 2019, 6, 4689-4695.	3.4	15
60	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	10.3	123
61	Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. , 2019, 1, 173-199.		213
62	Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N ₂ Reduction toward NH ₃ under Ambient Conditions. ACS Catalysis, 2019, 9, 5245-5267.	11.2	145
63	A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochimica Acta, 2019, 305, 493-501.	5.2	51
64	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	10.3	50
65	Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. Journal of Materials Chemistry A, 2019, 7, 10239-10245.	10.3	91
66	Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. Journal of Membrane Science, 2019, 579, 90-101.	8.2	27
67	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
68	2D materials for 1D electrochemical energy storage devices. Energy Storage Materials, 2019, 19, 102-123.	18.0	71
69	Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2019, 283, 304-311.	7.8	27
70	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 355-363.	4.7	16
71	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. Carbon, 2018, 132, 698-708.	10.3	26
72	Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomaterials Science, 2018, 6, 766-773.	5.4	37

#	Article	IF	CITATIONS
73	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	18.0	45
74	Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 102-111.	5.9	57
75	A Stable Bifunctional Catalyst for Rechargeable Zinc–Air Batteries: Iron–Cobalt Nanoparticles Embedded in a Nitrogenâ€Đoped 3D Carbon Matrix. Angewandte Chemie, 2018, 130, 16398-16402.	2.0	64
76	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	10.0	192
77	A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9, 4401-4408.	5.6	110
78	Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. Energy Storage Materials, 2017, 9, 221-228.	18.0	34
79	Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible Allâ€Solidâ€State Zinc–Air Battery. Advanced Energy Materials, 2017, 7, 1602420.	19.5	692
80	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	10.3	98
81	Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. Nanoscale, 2017, 9, 11640-11646.	5.6	28
82	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	21.0	243
83	Antibacterial performance of graphene oxide complemented with pluronic F-127 on physiologically mature gram-negative bacteria. , 2017, , .		0
84	Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2016, 26, 4067-4077.	14.9	591
85	Sandwich-Architectured Poly(lactic acid)–Graphene Composite Food Packaging Films. ACS Applied Materials & Interfaces, 2016, 8, 9994-10004.	8.0	146
86	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	19.5	50
87	Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon, 2016, 109, 694-710.	10.3	189
88	Bacterial physiology is a key modulator of the antibacterial activity of graphene oxide. Nanoscale, 2016, 8, 17181-17189.	5.6	42
89	Electro-synthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 16476-16483.	10.3	31
90	"Smart poisoning―of Co/SiO2catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale, 2016, 8, 17705-17713.	5.6	32

#	Article	IF	CITATIONS
91	Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. Small, 2016, 12, 951-962.	10.0	30
92	Microbe-derived carbon materials for electrical energy storage and conversion. Journal of Energy Chemistry, 2016, 25, 191-198.	12.9	44
93	Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors. Energy and Environmental Science, 2016, 9, 611-622.	30.8	94
94	Textile energy storage: Structural design concepts, material selection and future perspectives. Energy Storage Materials, 2016, 3, 123-139.	18.0	128
95	Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes. Scientific Reports, 2015, 5, 17883.	3.3	20
96	All arbon Nanoarchitectures as Highâ€Performance Separation Membranes with Superior Stability. Advanced Functional Materials, 2015, 25, 7348-7359.	14.9	248
97	Transforming Pristine Carbon Fiber Tows into High Performance Solidâ€ S tate Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	21.0	193
98	(9,8) Singleâ€Walled Carbon Nanotube Enrichment via Aqueous Twoâ€Phase Separation and Their Thinâ€Film Transistor Applications. Advanced Electronic Materials, 2015, 1, 1500151.	5.1	23
99	E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. Catalysis Today, 2015, 249, 228-235.	4.4	18
100	Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotubeâ€Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015, 25, 1063-1073.	14.9	288
101	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. Journal of Materials Chemistry A, 2015, 3, 7210-7214.	10.3	75
102	All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons, 2015, 2, 598-605.	12.2	120
103	Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. Nanotechnology, 2015, 26, 314003.	2.6	15
104	Sulfur-induced chirality changes in single-walled carbon nanotube synthesis by ethanol chemical vapor deposition on a Co/SiO ₂ catalyst. Journal of Materials Chemistry A, 2015, 3, 3310-3319.	10.3	26
105	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	16.0	47
106	Impact of Sublethal Levels of Single-Wall Carbon Nanotubes on Pyoverdine Production in <i>Pseudomonas aeruginosa</i> and Its Environmental Implications. Environmental Science and Technology Letters, 2015, 2, 105-111.	8.7	19
107	A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 2916-2921.	30.8	535
108	Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science, 2015, 474, 244-253.	8.2	211

Li Wei

#	Article	IF	CITATIONS
109	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	38.1	498
110	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. Journal of Solid State Chemistry, 2015, 224, 45-51.	2.9	16
111	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 2015, 81, 1-19.	10.3	106
112	Mechanical reinforcement of polyethylene using <i>n-</i> alkyl group-functionalized multiwalled carbon nanotubes: Effect of alkyl group carbon chain length and density. Polymer Engineering and Science, 2014, 54, 336-344.	3.1	5
113	Extraction of (9,8) Singleâ€Walled Carbon Nanotubes by Fluoreneâ€Based Polymers. Chemistry - an Asian Journal, 2014, 9, 868-877.	3.3	18
114	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	31.5	1,312
115	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€&tate Microâ€&upercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	21.0	243
116	Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon, 2014, 66, 134-143.	10.3	16
117	Multifunctional nitrogen-rich "brick-and-mortar―carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 11061.	10.3	34
118	Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. Journal of Membrane Science, 2013, 446, 244-254.	8.2	102
119	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	5.6	33
120	One-step dual template synthesis of platinum on mesoporous carbon nanowires for electrocatalysts. International Journal of Hydrogen Energy, 2013, 38, 2754-2759.	7.1	8
121	Acetoneâ€Induced Graphene Oxide Film Formation at the Water–Air Interface. Chemistry - an Asian Journal, 2013, 8, 437-443.	3.3	28
122	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5, 3457.	5.6	154
123	Chiral-Selective CoSO ₄ /SiO ₂ Catalyst for (9,8) Single-Walled Carbon Nanotube Growth. ACS Nano, 2013, 7, 614-626.	14.6	101
124	Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth. RSC Advances, 2013, 3, 3046.	3.6	36
125	Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors. Journal of Materials Research, 2013, 28, 1004-1011.	2.6	11
126	Facile preparation of Carbon nanotubes and graphene sheets by a catalyst-free refluxing approach. Nano Research, 2012, 5, 640-645.	10.4	6

#	Article	IF	CITATIONS
127	Recognition of carbon nanotube chirality by phage display. RSC Advances, 2012, 2, 1466-1476.	3.6	25
128	Reactive Sites for Chiral Selective Growth of Single-Walled Carbon Nanotubes: A DFT Study of Ni ₅₅ –C _{<i>n</i>} Complexes. Journal of Physical Chemistry A, 2012, 116, 11709-11717.	2.5	21
129	Chirality selective synthesis and enrichment of single walled carbon nanotubes for macroelectronics. , 2011, , .		0
130	Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. Nanoscale, 2011, 3, 1845.	5.6	17
131	Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane–Water Interface. Langmuir, 2011, 27, 9174-9181.	3.5	73
132	Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011, 21, 986-992.	14.9	54
133	Preparation and electrochemical properties of MnO2nanosheets attached to Au nanoparticles on carbon nanotubes. Dalton Transactions, 2011, 40, 2332-2337.	3.3	42
134	Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 2010, 150, 57-63.	3.8	105
135	Enrichment of (8,4) Singleâ€Walled Carbon Nanotubes Through Coextraction with Heparin. Small, 2010, 6, 110-118.	10.0	27
136	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	13.7	119
137	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	3.1	12
138	<i>IN SITU</i> FORMATION OF COBALT NANOCLUSTERS IN SOL–GEL SILICA FILMS FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2009, 04, 99-106.	1.0	5
139	Charge-induced conductance modulation of carbon nanotube field effect transistor memory devices. Carbon, 2009, 47, 3063-3070.	10.3	14
140	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	3.1	54
141	Sharper and Faster "Nano Darts―Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano, 2009, 3, 3891-3902.	14.6	493
142	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	3.1	26
143	Toward High-Performance Solution-Processed Carbon Nanotube Network Transistors by Removing Nanotube Bundles. Journal of Physical Chemistry C, 2008, 112, 12089-12091.	3.1	64
144	Assessment of (n,m) Selectively Enriched Small Diameter Single-Walled Carbon Nanotubes by Density Differentiation from Cobalt-Incorporated MCM-41 for Macroelectronics. Chemistry of Materials, 2008, 20, 7417-7424.	6.7	17

#	Article	IF	CITATIONS
145	Selective Enrichment of (6,5) and (8,3) Single-Walled Carbon Nanotubes via Cosurfactant Extraction from Narrow (<i>n</i> , <i>m</i>) Distribution Samples. Journal of Physical Chemistry B, 2008, 112, 2771-2774.	2.6	57
146	Low-Defect, Purified, Narrowly (n,m)-Dispersed Single-Walled Carbon Nanotubes Grown from Cobalt-Incorporated MCM-41. ACS Nano, 2007, 1, 327-336.	14.6	56
147	Pressure-Induced Single-Walled Carbon Nanotube (<i>n,m</i>) Selectivity on Coâ^'Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	3.1	72
148	(n,m) Selectivity of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Coâ^'Mo Catalysts. Journal of the American Chemical Society, 2007, 129, 9014-9019.	13.7	184
149	Construction of hierarchical flowerâ€shaped (NH4)2V3O8/rGO with enhanced zinc storage performance. ChemElectroChem, 0, , .	3.4	1