Tobin J Marks

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1806890/tobin-j-marks-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

747	67,639 citations	129	237
papers		h-index	g-index
792 ext. papers	73,659 ext. citations	12.4 avg, IF	8.24 L-index

#	Paper	IF	Citations
747	Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C-S bond activation <i>Nature Communications</i> , 2022 , 13, 144	17.4	2
746	Diverse Mechanistic Pathways in Single-Site Heterogeneous Catalysis: Alcohol Conversions Mediated by a High-Valent Carbon-Supported Molybdenum-Dioxo Catalyst. <i>ACS Catalysis</i> , 2022 , 12, 124	47-3-25	7 ¹
745	16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. <i>Science China Chemistry</i> , 2022 , 65, 309-317	7.9	12
744	Low-Temperature Thin-Film Combustion Synthesis of Metal-Oxide Semiconductors: Science and Technology 2022 , 159-184		
743	Synthesis and Structure-Activity Characterization of a Single-Site MoO Catalytic Center Anchored on Reduced Graphene Oxide <i>Journal of the American Chemical Society</i> , 2021 , 143, 21532-21540	16.4	2
742	Symmetry-Breaking Charge Separation in Phenylene-Bridged Perylenediimide Dimers. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 7633-7643	2.8	5
741	Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for High-Resolution and Enhanced Color-Selective Imaging. <i>Advanced Materials</i> , 2021 , e2106215	24	4
740	Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17153-17161	16.4	2
739	Flexible complementary circuits operating at sub-0.5 V via hybrid organic-inorganic electrolyte-gated transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
738	Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. <i>Small</i> , 2021 , 17, e2007661	11	7
737	Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. <i>Advanced Materials</i> , 2021 , 33, e2007041	24	23
736	Catalyst Deactivation by Carbon Deposition: The Remarkable Case of Nickel Confined by Atomic Layer Deposition. <i>ChemCatChem</i> , 2021 , 13, 2988-3000	5.2	2
735	Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors. <i>ACS Applied Materials & Englisher States</i> , 2021, 13, 15399-15408	9.5	8
734	Beyond the Active Site. Cp*ZrMe3/Sulfated Alumina-Catalyzed Olefin Polymerization Tacticity via Catalyst???Surface Ion-Pairing. <i>ChemCatChem</i> , 2021 , 13, 2564-2569	5.2	0
733	Suppressed Oxidation and Photodarkening of Hybrid Tin Iodide Perovskite Achieved with Reductive Organic Small Molecule. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4704-4710	6.1	2
73²	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting KBiSe. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6221-6228	16.4	1
731	Systematic Merging of Nonfullerene Acceptor Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6123-613	39 ^{6.4}	34

(2021-2021)

730	Electronic Structure of Metallophthalocyanines, MPc (M = Fe, Co, Ni, Cu, Zn, Mg) and Fluorinated MPc. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4055-4061	2.8	6
729	Leveraging Molecular Properties to Tailor Mixed-Dimensional Heterostructures beyond Energy Level Alignment. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4543-4557	6.4	4
728	Doping Indium Oxide Films with Amino-Polymers of Varying Nitrogen Content Markedly Affects Charge Transport and Mechanical Flexibility. <i>Advanced Functional Materials</i> , 2021 , 31, 2100451	15.6	3
727	"Soft" oxidative coupling of methane to ethylene: Mechanistic insights from combined experiment and theory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
726	Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. <i>Nature Communications</i> , 2021 , 12, 4530	17.4	3
725	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10502-10515	16.4	18
724	Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 26-31	6.4	3
723	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. <i>Angewandte Chemie</i> , 2021 , 133, 10596-10609	3.6	1
722	Ultraviolet Light-Densified Oxide-Organic Self-Assembled Dielectrics: Processing Thin-Film Transistors at Room Temperature. <i>ACS Applied Materials & Dielectrics</i> , 2021 , 13, 3445-3453	9.5	4
721	Synthesis and Characterization of a Well-Defined Carbon Nanohorn-Supported Molybdenum Dioxo Catalyst by SMART-EM Imaging. Surface Structure at the Atomic Level. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 427-432	5.1	8
720	Homoleptic Lanthanide Amide Catalysts for Organic Synthesis: Experiment and Theory. <i>ACS Catalysis</i> , 2021 , 11, 2715-2734	13.1	16
719	Surface vs Homogeneous Organo-Hafnium Catalyst Ion-Pairing and Ligand Effects on Ethylene Homo- and Copolymerizations. <i>ACS Catalysis</i> , 2021 , 11, 3239-3250	13.1	5
718	Processable High Electron Mobility Ecopolymers via Mesoscale Backbone Conformational Ordering. <i>Advanced Functional Materials</i> , 2021 , 31, 2009359	15.6	4
717	Carbon Free and Noble Metal Free Ni2Mo6S8 Electrocatalyst for Selective Electrosynthesis of H2O2. <i>Advanced Functional Materials</i> , 2021 , 31, 2104716	15.6	10
716	Transition-Metal-Free Homopolymerization of Pyrrolo[2,3-:5,4-']bisthiazoles via Nucleophilic Aromatic Substitution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41094-41101	9.5	0
715	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. <i>Nature Communications</i> , 2021 , 12, 4937	17.4	4
714	New Opportunities for High-Performance Source-Gated Transistors Using Unconventional Materials. <i>Advanced Science</i> , 2021 , 8, e2101473	13.6	5
713	Molecular Encapsulation of Naphthalene Diimide (NDI) Based Econjugated Polymers: A Tool for Understanding Photoluminescence. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25005-25012	16.4	3

712	Regiospecific -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. <i>Materials Horizons</i> , 2021 ,	14.4	5
711	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having Extended Units with Broad Near-IR Absorption. <i>ACS Energy Letters</i> , 2021 , 6, 728-738	20.1	35
710	Dielectric materials for electrolyte gated transistor applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9348-9376	7.1	6
709	Range-separated hybrid functionals for mixed dimensional heterojunctions: Application to phthalocyanines/MoS2. <i>APL Materials</i> , 2021 , 9, 121112	5.7	3
708	Fluorinating Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000635	21.8	45
707	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. <i>ACS Energy Letters</i> , 2020 , 5, 1780-1787	20.1	31
706	Flexible and stretchable metalloxide nanofiber networks for multimodal and monolithically integrated wearable electronics. <i>Nature Communications</i> , 2020 , 11, 2405	17.4	73
705	Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12440-12452	16.4	14
704	Breath figure-derived porous semiconducting films for organic electronics. <i>Science Advances</i> , 2020 , 6, eaaz1042	14.3	33
703	Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 34901-34909	9.5	1
702	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 17551-17557	, 11.5	12
701	High Ethylene-Yield Oxidative Dehydrogenation of Ethane Using Sulfur Vapor as a âBoftâlDxidant. <i>ChemCatChem</i> , 2020 , 12, 4538-4542	5.2	4
700	Versatile catalytic strategy for polar-functionalized, cross-linkable, self-healing, and photo-responsive polyolefins. <i>Science Bulletin</i> , 2020 , 65, 605-606	10.6	1
699	Early Transition Metal Catalysis for Olefinâ B olar Monomer Copolymerization. <i>Angewandte Chemie</i> , 2020 , 132, 14834-14843	3.6	13
698	Synthesis, structures, photophysical properties, and catalytic characteristics of 2,9-dimesityl-1,10-phenanthroline (dmesp) transition metal complexes. <i>Journal of Polymer Science</i> , 2020 , 58, 1130-1143	2.4	4
697	Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures. <i>ACS Nano</i> , 2020 , 14, 3509-3518	16.7	12
696	Engineering Intrinsic Flexibility in Polycrystalline Molecular Semiconductor Films by Grain Boundary Plasticization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5487-5492	16.4	15
695	Early Transition Metal Catalysis for Olefin-Polar Monomer Copolymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14726-14735	16.4	39

(2020-2020)

694	Third- and Fifth-Order Nonlinear Optical Response of a TICT/Stilbene Hybrid Chromophore. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5363-5370	3.8	6
693	La[N(SiMe)]-Catalyzed Deoxygenative Reduction of Amides with Pinacolborane. Scope and Mechanism. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8019-8028	16.4	37
692	transport measurements reveal source of mobility enhancement of MoS and MoTe during dielectric deposition. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1273-1279	4	3
691	Extended Naphthalene Diimide Derivatives for n-Type Semiconducting Polymers. <i>Chemistry of Materials</i> , 2020 , 32, 5317-5326	9.6	16
690	Photoinduced electron transfer from zinc meso-tetraphenylporphyrin to a one-dimensional perylenediimide aggregate: Probing anion delocalization effects. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 143-152	1.8	4
689	Light and complex 3D MoS/graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. <i>Nanoscale</i> , 2020 , 12, 2715-2725	7.7	25
688	Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. <i>Joule</i> , 2020 , 4, 189-	- 2:0/6 8	87
687	Structureatharge Transport Relationships in Fluoride-Doped Amorphous Semiconducting Indium Oxide: Combined Experimental and Theoretical Analysis. <i>Chemistry of Materials</i> , 2020 , 32, 805-820	9.6	9
686	Bis-Ferrocenyl-Pyridinediimine Trinuclear Mixed-Valent Complexes with Metal-Binding Dependent Electronic Coupling: Synthesis, Structures, and Redox-Spectroscopic Characterization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18715-18729	16.4	9
685	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. <i>Journal of the American</i> Chemical Society, 2020 , 142, 14532-14547	16.4	120
684	Atom vacancies and electronic transmission Stark effects in boron nanoflake junctions. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15208-15218	7.1	
683	Charge generation mechanism tuned via film morphology in small molecule bulk-heterojunction		
	photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252	7.1	5
682		7.1	34
682	photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252 Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site		34
	photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252 Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19857-19861 Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and Amino-Olefin Copolymerization. <i>Angewandte Chemie -</i>	16.4	34
681	photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252 Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19857-19861 Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and Amino-Olefin Copolymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20522-20528 Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction	16.4	34
680	Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19857-19861 Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and Amino-Olefin Copolymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20522-20528 Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. <i>EnergyChem</i> , 2020 , 2, 100042 Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 ,	16.4 16.4 36.9	34 11 25

676	Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and AminoâDlefin Copolymerization. <i>Angewandte Chemie</i> , 2020 , 132, 20703-20709	3.6	3
675	Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16632-16643	16.4	74
674	Printable Organic-Inorganic Nanoscale Multilayer Gate Dielectrics for Thin-Film Transistors Enabled by a Polymeric Organic Interlayer. <i>Advanced Functional Materials</i> , 2020 , 30, 2005069	15.6	7
673	Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1905393	15.6	28
672	Building Blocks for High-Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Post-Fullerene ITIC Ensembles. <i>ChemPhysChem</i> , 2019 , 20, 2608-2626	3.2	29
671	Catalytic One-Pot Conversion of Renewable Platform Chemicals to Hydrocarbon and Ether Biofuels through Tandem Hf(OTf) +Pd/C Catalysis. <i>ChemSusChem</i> , 2019 , 12, 5217	8.3	7
670	La[N(SiMe3)2]3-Catalyzed Ester Reductions with Pinacolborane: Scope and Mechanism of Ester Cleavage. <i>ACS Catalysis</i> , 2019 , 9, 9015-9024	13.1	38
669	Side Chain and Solvent Direction of Film Morphology in Small-Molecule Organic Solar Materials. <i>Chemistry of Materials</i> , 2019 , 31, 8308-8319	9.6	8
668	Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3274-3287	16.4	226
667	Recent Advances in Squaraine Dyes for Bulk-Heterojunction Organic Solar Cells. <i>Organic Photonics and Photovoltaics</i> , 2019 , 6, 1-16	5	7
666	Stable Postfullerene Solar Cells via Direct CâH Arylation Polymerization. Morphologyâ P erformance Relationships. <i>Chemistry of Materials</i> , 2019 , 31, 4313-4321	9.6	24
665	Molecular-Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS2 Mixed-Dimensional Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13337-13343	3.8	31
664	Efficient Chemoselective Reduction of N-Oxides and Sulfoxides Using a Carbon-Supported Molybdenum-Dioxo Catalyst and Alcohol. <i>ChemCatChem</i> , 2019 , 11, 4139-4146	5.2	10
663	CsSnI-Encapsulated Multidye-Sensitized All-Solid-State Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 21424-21434	9.5	21
662	Unexpected Precatalyst Ligand Effects in Phenoxyimine Zr-Catalyzed Ethylene/1-Octene Copolymerizations. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7822-7830	16.4	12
661	Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 9230-9238	11.5	25
660	A Twist on Nonlinear Optics: Understanding the Unique Response of ETwisted Chromophores. <i>Accounts of Chemical Research</i> , 2019 , 52, 1428-1438	24.3	42
659	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (2019), 11, 14166-14174	9.5	19

658	Electronic Coupling in Metallophthalocyanine-Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. <i>ACS Nano</i> , 2019 , 13, 4183-4190	16.7	38
657	Processing, Structure, and Transistor Performance: Combustion versus Pulsed Laser Growth of Amorphous Oxides. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 548-557	4	12
656	Significant Polar Comonomer Enchainment in Zirconium-Catalyzed, Masking Reagent-Free, Ethylene Copolymerizations. <i>Angewandte Chemie</i> , 2019 , 131, 7104-7108	3.6	13
655	Significant Polar Comonomer Enchainment in Zirconium-Catalyzed, Masking Reagent-Free, Ethylene Copolymerizations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7030-7034	16.4	25
654	Energy-distinguishable bipolar UV photoelectron injection from LiCl-promoted FAPbCl3 perovskite nanorods. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13043-13049	13	6
653	Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900265	15.6	92
652	Ultrahigh Vacuum Self-Assembly of Rotationally Commensurate C8-BTBT/MoS2/Graphene Mixed-Dimensional Heterostructures. <i>Chemistry of Materials</i> , 2019 , 31, 1761-1766	9.6	13
651	Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 7608-7617	9.6	14
650	Simultaneous Bottom-Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small-Molecule Electrolytes. <i>Advanced Materials</i> , 2019 , 31, e1903239	24	59
649	Mechanism of Organoscandium-Catalyzed Ethylene Copolymerization with Amino-Olefins: A Quantum Chemical Analysis. <i>ACS Catalysis</i> , 2019 , 9, 8810-8818	13.1	19
648	Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13410-13420	16.4	30
647	Marked Cofuel Tuning of Combustion Synthesis Pathways for Metal Oxide Semiconductor Films. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900540	6.4	11
646	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. <i>Nano Energy</i> , 2019 , 64, 103936	17.1	28
645	Perovskite Solar Cells: Simultaneous Bottom-Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small-Molecule Electrolytes (Adv. Mater. 40/2019). <i>Advanced Materials</i> , 2019 , 31, 1970283	24	
644	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. <i>ACS Energy Letters</i> , 2019 ,	20.1	6
643	Indacenodithiazole-Ladder-Type Bridged Di(thiophene)-Difluoro-Benzothiadiazole-Conjugated Copolymers as Ambipolar Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 9488-9496	9.6	13
642	Quantum Interference and Substantial Property Tuning in ConjugatedRegio-Resistive Organic (ZORRO) Junctions. <i>Nano Letters</i> , 2019 , 19, 8956-8963	11.5	6
641	Highly branched polyethylene oligomers via group IV-catalysed polymerization in very nonpolar media. <i>Nature Catalysis</i> , 2019 , 2, 236-242	36.5	44

640	Structural and thermodynamic limits of layer thickness in 2D halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 58-66	11.5	152
639	Germanium Fluoride Nanocages as Optically Transparent n-Type Materials and Their Endohedral Metallofullerene Derivatives. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1672-1684	16.4	8
638	Kinetic Isoconversion Loop Catalysis: A Reactor Operation Mode To Investigate Slow Catalyst Deactivation Processes, with Ni/Al2O3 for the Dry Reforming of Methane. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2481-2491	3.9	2
637	Polymersolarzellen: Fortschritt, Herausforderungen und Perspektiven. <i>Angewandte Chemie</i> , 2019 , 131, 4173-4186	3.6	24
636	All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4129-4142	16.4	305
635	Oxide-Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. <i>Nano Letters</i> , 2019 , 19, 471-476	11.5	7
634	Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors. <i>Advanced Materials</i> , 2019 , 31, e1805082	24	31
633	Synthesis, Characterization, and Thermal Properties of N-alkyl 即iketiminate Manganese Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 3017-3024	5.1	12
632	Cationic Pyridylamido Adsorbate on Brfisted Acidic Sulfated Zirconia: A Molecular Supported Organohafnium Catalyst for Olefin Homo- and Co-Polymerization. <i>ACS Catalysis</i> , 2018 , 8, 4893-4901	13.1	15
631	Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5457-5473	16.4	29
630	High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes. <i>Science Advances</i> , 2018 , 4, eaap9104	14.3	38
629	High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	7
628	Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 6484-6490	9.5	4
627	Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All-Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1702173	21.8	50
626	Novel unsymmetrical squaraine-based small molecules for organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 847-854	7.1	18
625	Synthesis of Supported Pd0 Nanoparticles from a Single-Site Pd2+ Surface Complex by Alkene Reduction. <i>Chemistry of Materials</i> , 2018 , 30, 1032-1044	9.6	13
624	Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indiuma@inc Oxide Transistors. <i>Chemistry of Materials</i> , 2018 , 30, 3323-3329	9.6	28
623	Catalyst Nuclearity Effects on Stereo- and Regioinduction in Pyridylamidohafnium-Catalyzed Propylene and 1-Octene Polymerizations. <i>Macromolecules</i> , 2018 , 51, 2401-2410	5.5	18

622	Low-Loss Near-Infrared Hyperbolic Metamaterials with Epitaxial ITO-In2O3 Multilayers. <i>ACS Photonics</i> , 2018 , 5, 2000-2007	6.3	10
621	Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesdenâ B opper Perovskites for High-Efficiency Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 170	00 9 789	231
620	Multistates and Polyamorphism in Phase-Change KSbSe. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9261-9268	16.4	6
619	How Close Is Too Close? Polymerization Behavior and Monomer-Dependent Reorganization of a Bimetallic Salphen Organotitanium Catalyst. <i>Organometallics</i> , 2018 , 37, 2429-2436	3.8	11
618	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent Sulfur Dxygen Interactions. <i>Macromolecules</i> , 2018 , 51, 3874-3885	5.5	41
617	Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 8739-8750	13.1	41
616	Epitaxial Growth of Ecyclodextrin-Containing Metal-Organic Frameworks Based on a Host-Guest Strategy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11402-11407	16.4	27
615	Closely packed, low reorganization energy Extended postfullerene acceptors for efficient polymer solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8341-E8348	11.5	85
614	Unprecedented Large Hyperpolarizability of Twisted Chromophores in Polar Media. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8746-8755	16.4	24
613	Processing-dependent thermal stability of a prototypical amorphous metal oxide. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
612	Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. <i>Advanced Materials</i> , 2018 , 30, 1704263	24	85
611	Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 388-393	16.4	118
610	Effects of 1,8-diiodooctane on domain nanostructure and charge separation dynamics in PC71BM-based bulk heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23805-23818	13	11
609	Surface Chemistry and Long-Term Stability of Amorphous ZnâBnâD Thin Films. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28151-28157	3.8	3
608	Boundary Lubrication Mechanisms for High-Performance Friction Modifiers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40203-40211	9.5	9
60 7	Suppressing Defect Formation Pathways in the Direct CâH Arylation Polymerization of Photovoltaic Copolymers. <i>Macromolecules</i> , 2018 , 51, 9140-9155	5.5	30
606	Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12501-12510	16.4	29
605	A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics. <i>Advanced Materials</i> , 2018 , 30, e1801898	24	123

604	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. <i>Physical Review Letters</i> , 2018 , 121, 127401	7.4	35
603	Performance, Morphology, and Charge Recombination Correlations in Ternary Squaraine Solar Cells. <i>Chemistry of Materials</i> , 2018 , 30, 6810-6820	9.6	13
602	Organic Salts Suppress Aggregation and Enhance the Hyperpolarizability of a ETwisted Chromophore. <i>Chemistry - A European Journal</i> , 2018 , 24, 15801-15805	4.8	5
601	Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2. <i>Chemistry of Materials</i> , 2018 , 30, 3628-3632	9.6	20
600	High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. <i>Chemical Reviews</i> , 2018 , 118, 5690-5754	68.1	354
599	In Situ Analysis of Solvent and Additive Effects on Film Morphology Evolution in Spin-Cast Small-Molecule and Polymer Photovoltaic Materials. <i>Advanced Energy Materials</i> , 2018 , 8, 1800611	21.8	34
598	Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21492-21498	9.5	11
597	Rapid, Mild, and Selective Ketone and Aldehyde Hydroboration/Reduction Mediated by a Simple Lanthanide Catalyst. <i>ACS Catalysis</i> , 2017 , 7, 1244-1247	13.1	98
596	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. <i>Applied Physics Letters</i> , 2017 , 110, 053101	3.4	57
595	Alkyl-Cyclens as Effective Sulfur- and Phosphorus-Free Friction Modifiers for Boundary Lubrication. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	32
594	Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes. <i>ACS Nano</i> , 2017 , 11, 2992-3000	16.7	24
593	Direct Spectroscopic Evidence for Isolated Silanols in SiOx/Al2O3 and Their Formation Mechanism. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 6060-6064	3.8	8
592	Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600610	4.8	17
591	Stabilizing Single-Atom and Small-Domain Platinum via Combining Organometallic Chemisorption and Atomic Layer Deposition. <i>Organometallics</i> , 2017 , 36, 818-828	3.8	28
590	Buta-1,3-diyne-Based EConjugated Polymers for Organic Transistors and Solar Cells. <i>Macromolecules</i> , 2017 , 50, 1430-1441	5.5	37
589	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5351-5361	13	24
588	Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. <i>Applied Physics Letters</i> , 2017 , 110, 073102	3.4	11
587	Low-Temperature Atomic Layer Deposition of MoS2 Films. <i>Angewandte Chemie</i> , 2017 , 129, 5073-5077	3.6	12

586	Charge Separation Mechanisms in Ordered Films of Self-Assembled Donor-Acceptor Dyad Ribbons. <i>ACS Applied Materials & Donor-Acceptor Dyad Ribbons</i> . 33493-33503	9.5	14
585	Alkynyl-Functionalized Head-to-Head Linkage Containing Bithiophene as a Weak Donor Unit for High-Performance Polymer Semiconductors. <i>Chemistry of Materials</i> , 2017 , 29, 4109-4121	9.6	27
584	Systematic evaluation of structureaproperty relationships in heteroacene aldiketopyrrolopyrrole molecular donors for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9217-9232	13	26
583	Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content. <i>Journal of Tribology</i> , 2017 , 139,	1.8	5
582	Efficient carbon-supported heterogeneous molybdenum-dioxo catalyst for chemoselective reductive carbonyl coupling. <i>Catalysis Science and Technology</i> , 2017 , 7, 2165-2169	5.5	10
581	Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 4432-4444	9.6	58
580	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12310-12321	13	45
579	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. <i>Chemistry of Materials</i> , 2017 , 29, 4008-4013	9.6	12
578	UV-Ozone Interfacial Modification in Organic Transistors for High-Sensitivity NO Detection. <i>Advanced Materials</i> , 2017 , 29, 1701706	24	92
577	Low-Temperature Atomic Layer Deposition of MoS Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4991-4995	16.4	89
576	Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from aqueous alcohol solutions. <i>Energy and Environmental Science</i> , 2017 , 10, 1558-1562	35.4	15
575	Influence of Anion Delocalization on Electron Transfer in a Covalent Porphyrin Donor-Perylenediimide Dimer Acceptor System. <i>Journal of the American Chemical Society</i> , 2017 , 139, 749-756	16.4	45
574	Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition. <i>Dalton Transactions</i> , 2017 , 46, 1172-1178	4.3	7
573	Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. <i>Advanced Energy Materials</i> , 2017 , 7, 1601660	21.8	164
572	Correlated In Situ Low-Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non-Fullerene Acceptors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703805	15.6	22
571	In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating. <i>Advanced Materials</i> , 2017 , 29, 1703933	24	60
570	Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14356-14359	16.4	30
569	Effect of Alkyl Chain Branching Point on 3D Crystallinity in High N-Type Mobility Indolonaphthyridine Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1704069	15.6	16

568	Scandium-Catalyzed Self-Assisted Polar Co-monomer Enchainment in Ethylene Polymerization. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15964-15968	16.4	47
567	Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structureâ P roperty Relationships. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700189	6.4	21
566	Enhanced Fill Factor through Chalcogen Side-Chain Manipulation in Small-Molecule Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 2415-2421	20.1	15
565	Dithienylbenzodiimide: a new electron-deficient unit for n-type polymer semiconductors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9559-9569	7.1	18
564	Singlet Fission within Diketopyrrolopyrrole Nanoparticles in Water. <i>Chemistry of Materials</i> , 2017 , 29, 6810-6817	9.6	45
563	Optical Properties and Modeling of 2D Perovskite Solar Cells. <i>Solar Rrl</i> , 2017 , 1, 1700062	7.1	41
562	Even and odd oligothiophene-bridged bis-naphthalimides for n-type and ambipolar organic field effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9439-9450	7.1	5
561	Enhancing Indacenodithiophene Acceptor Crystallinity via Substituent Manipulation Increases Organic Solar Cell Efficiency. <i>Chemistry of Materials</i> , 2017 , 29, 10294-10298	9.6	92
560	The Dipole Moment Inversion Effects in Self-Assembled Nanodielectrics for Organic Transistors. <i>Chemistry of Materials</i> , 2017 , 29, 9974-9980	9.6	15
559	Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10066-E10073	11.5	97
558	Distinctive Stereochemically Linked Cooperative Effects in Bimetallic Titanium Olefin Polymerization Catalysts. <i>Organometallics</i> , 2017 , 36, 4403-4421	3.8	17
557	New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH))(CHNH)PbI: Structure, Properties, and Photovoltaic Performance. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16297-16309	16.4	251
556	Chain Length Dependence of the Dielectric Constant and Polarizability in Conjugated Organic Thin Films. <i>ACS Nano</i> , 2017 , 11, 5970-5981	16.7	32
555	Solution-Processed Carbon Nanotube True Random Number Generator. <i>Nano Letters</i> , 2017 , 17, 4976-49	81 .5	29
554	Metal and Counteranion Nuclearity Effects in Organoscandium-Catalyzed Isoprene Polymerization and Copolymerization. <i>ACS Catalysis</i> , 2017 , 7, 5214-5219	13.1	21
553	Molecular Design Principles for Magneto-Electric Materials: All-Electric Susceptibilities Relevant to Optimal Molecular Chromophores. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 16491-16500	3.8	4
552	Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 1690-1697	20.1	30
551	Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. <i>Chemical Reviews</i> , 2017 , 117, 10291-10318	68.1	377

(2016-2017)

550	Hydrolytic cleavage of both CS carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature. <i>Nature Chemistry</i> , 2017 , 9, 188-193	17.6	39
549	Mixed-dimensional van der Waals heterostructures. <i>Nature Materials</i> , 2017 , 16, 170-181	27	897
548	Scandium-Catalyzed Self-Assisted Polar Co-monomer Enchainment in Ethylene Polymerization. <i>Angewandte Chemie</i> , 2017 , 129, 16180-16184	3.6	19
547	Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics. <i>Accounts of Chemical Research</i> , 2016 , 49, 1614-23	24.3	18
546	Ternary Polymerâ P erylenediimideâ¶arbon Nanotube Photovoltaics with High Efficiency and Stability under Super-Solar Irradiation. <i>ACS Energy Letters</i> , 2016 , 1, 548-555	20.1	26
545	Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11749-61	16.4	130
544	Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. <i>ACS Catalysis</i> , 2016 , 6, 6762-6769	13.1	36
543	Room Temperature Phase Transition in Methylammonium Lead Iodide Perovskite Thin Films Induced by Hydrohalic Acid Additives. <i>ChemSusChem</i> , 2016 , 9, 2656-2665	8.3	43
542	Silver(I) Bis(pyrazolyl)methane Complexes and Their Implementation as Precursors for Metallic Silver Deposition. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 2626-2633	2.3	10
- 4-5	Annulated Thienyl-Vinylene-Thienyl Building Blocks for Econjugated Copolymers: Ring Dimensions		
541	and Isomeric Structure Effects on Econjugation Length and Charge Transport. <i>Chemistry of Materials</i> , 2016 , 28, 5772-5783	9.6	14
540		6.4	7
	Materials, 2016 , 28, 5772-5783 Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled		7
540	Materials, 2016 , 28, 5772-5783 Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4223-4229 Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated	6.4	7
540	Materials, 2016, 28, 5772-5783 Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4223-4229 Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. Journal of the American Chemical Society, 2016, 138, 15699-15709 Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer	6.4	7
540539538	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4223-4229 Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. Journal of the American Chemical Society, 2016, 138, 15699-15709 Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS-Polymer Heterojunctions. ACS Nano, 2016, 10, 10573-10579 Electronic Structure and Potential Reactivity of Silaaromatic Molecules. Journal of Physical	6.4 16.4 16.7	7 117 74
540539538537	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4223-4229 Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. Journal of the American Chemical Society, 2016, 138, 15699-15709 Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS-Polymer Heterojunctions. ACS Nano, 2016, 10, 10573-10579 Electronic Structure and Potential Reactivity of Silaaromatic Molecules. Journal of Physical Chemistry A, 2016, 120, 9476-9488 Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO2 via Surface Organometallic	6.4 16.4 16.7	7 117 74
540539538537536	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4223-4229 Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15699-15709 Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS-Polymer Heterojunctions. <i>ACS Nano</i> , 2016 , 10, 10573-10579 Electronic Structure and Potential Reactivity of Silaaromatic Molecules. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 9476-9488 Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO2 via Surface Organometallic Chemistry. <i>ACS Catalysis</i> , 2016 , 6, 8380-8388 Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics:	6.4 16.4 16.7 2.8	7 117 74 13

532	High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes. <i>ACS Applied Materials & Chemically Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Chemically Stable Graphene Electrodes</i> . <i>ACS Applied Materials & Chemically Stable Graphene Electrodes</i> .	9.5	45
531	CâN bond hydrogenolysis of aniline and cyclohexylamine over TaOxâAl2O3. <i>New Journal of Chemistry</i> , 2016 , 40, 6001-6004	3.6	4
530	Oil-Soluble Silver-Organic Molecule for in Situ Deposition of Lubricious Metallic Silver at High Temperatures. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	16
529	Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500427	6.4	85
528	Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism. <i>Energy and Environmental Science</i> , 2016 , 9, 550-564	35.4	25
527	Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. <i>Nano Letters</i> , 2016 , 16, 497-503	11.5	240
526	Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 2449-2460	9.6	84
525	Metal oxides for optoelectronic applications. <i>Nature Materials</i> , 2016 , 15, 383-96	27	903
524	Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 5058-64	9.5	13
523	Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 1357-66	3.4	100
522	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555	9.4	149
521	Volatile Hexavalent Oxo-amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2016 , 28, 1907-1919	9.6	33
520	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. <i>Nano Letters</i> , 2016 , 16, 2580-5	11.5	106
519	Thermal Conductivity Comparison of Indium Gallium Zinc Oxide Thin Films: Dependence on Temperature, Crystallinity, and Porosity. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 7467-7475	3.8	25
518	All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1240-51	16.4	237
517	Star-shaped hole transport materials with indeno[1,2-b] thiophene or fluorene on a triazine core for efficient perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1186-1190	13	34
516	Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport. <i>Advanced Functional Materials</i> , 2016 , 26, 6179-6187	15.6	63
515	Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600502	21.8	141

514	Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d0 Organozirconium Catalyst. <i>Angewandte Chemie</i> , 2016 , 128, 5349-5353	3.6	16
513	Benzotrithiophene versus Benzo/Naphthodithiophene Building Blocks: The Effect of Star-Shaped versus Linear Conjugation on Their Electronic Structures. <i>Chemistry - A European Journal</i> , 2016 , 22, 637	4- 8 1	12
512	Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d(0) Organozirconium Catalyst. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5263-7	16.4	44
511	Carbon Nanotubes: Enhanced Uniformity and Area Scaling in Carbon NanotubeâHullerene Bulk-Heterojunction Solar Cells Enabled by Solvent Additives (Adv. Energy Mater. 2/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2
510	Transistors: Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics (Adv. Mater. 1/2016). <i>Advanced Materials</i> , 2016 , 28, 203-203	24	2
509	Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics. <i>Advanced Materials</i> , 2016 , 28, 63-8	24	52
508	Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6975-84	16.4	81
507	Bithiophenesulfonamide Building Block for EConjugated Donor-Acceptor Semiconductors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6944-7	16.4	49
506	Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis. <i>Accounts of Chemical Research</i> , 2016 , 49, 824-34	24.3	48
505	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. <i>Nature Chemistry</i> , 2016 , 8, 597-602	17.6	574
504	Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. Journal of the American Chemical Society, 2016 , 138, 7067-74	16.4	52
503	Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. <i>Chemistry of Materials</i> , 2016 , 28, 3928-3936	9.6	37
502	Oxide Transistors: Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport (Adv. Funct. Mater. 34/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6320-6320	15.6	
501	Mobility versus Alignment of a Semiconducting Extended Discotic Liquid-Crystalline Triindole. <i>ACS Applied Materials & Discotic Liquid-Crystalline Triindole.</i>	9.5	25
500	A Neutrally Charged Trimethylmanganese(III) Complex: Synthesis, Characterization, and Disproportionation Chemistry. <i>Organometallics</i> , 2016 , 35, 2683-2688	3.8	7
499	Benzo[d][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. <i>Chemistry of Materials</i> , 2016 , 28, 6390-6400	9.6	29
498	Ultra-flexible, "invisible" thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. <i>Advanced Materials</i> , 2015 , 27, 2390-9	24	100
497	Stokes shift/emission efficiency trade-off in donorâlicceptor perylenemonoimides for luminescent solar concentrators. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8045-8054	13	51

496	Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8932-8941	7.1	43
495	Pyridylamido Bi-Hafnium Olefin Polymerization Catalysis: Conformationally Supported HfIIIHf Enchainment Cooperativity. <i>ACS Catalysis</i> , 2015 , 5, 5272-5282	13.1	31
494	A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells. <i>Macromolecules</i> , 2015 , 48, 5148-5154	5.5	40
493	Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7897-902	11.5	37
492	Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3217-22	11.5	151
491	Materials science: Semiconductors grown large and thin. <i>Nature</i> , 2015 , 520, 631-2	50.4	30
490	Orthogonal tandem catalysis. <i>Nature Chemistry</i> , 2015 , 7, 477-82	17.6	278
489	Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4414-23	16.4	210
488	Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst acidic oxide surface binding geometry. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6770-80	16.4	59
487	Investigation of band-offsets at monolayer-multilayer MoSâlJunctions by scanning photocurrent microscopy. <i>Nano Letters</i> , 2015 , 15, 2278-84	11.5	115
486	Cooperative coupling of cyanine and tictoid twisted Bystems to amplify organic chromophore cubic nonlinearities. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4622-5	16.4	47
485	Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. <i>Nature Nanotechnology</i> , 2015 , 10, 403-6	28.7	426
484	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12565-79	16.4	80
483	Selective Ether/Ester Câ® Cleavage of an Acetylated Lignin Model via Tandem Catalysis. <i>ACS Catalysis</i> , 2015 , 5, 7004-7007	13.1	53
482	Ligand-Unsymmetrical Phenoxyiminato Dinickel Catalyst for High Molecular Weight Long-Chain Branched Polyethylenes. <i>ACS Macro Letters</i> , 2015 , 4, 1297-1301	6.6	16
481	Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11445-52	16.4	455
480	Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. <i>Nano Letters</i> , 2015 , 15, 7029-36	11.5	78
479	Solution-processed carbon nanotube thin-film complementary static random access memory. Nature Nanotechnology, 2015 , 10, 944-8	28.7	163

(2015-2015)

478	Ultra-High-Response, Multiply Twisted Electro-optic Chromophores: Influence of Bystem Elongation and Interplanar Torsion on Hyperpolarizability. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12521-38	16.4	47
477	Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane -> Ethylene Coupling. Scope and Mechanistic Observations. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15234-40	16.4	23
476	The Next Breakthrough for Organic Photovoltaics?. Journal of Physical Chemistry Letters, 2015, 6, 77-84	6.4	113
475	Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins. <i>Catalysis Letters</i> , 2015 , 145, 3-14	2.8	116
474	Long-lived charge carrier generation in ordered films of a covalent perylenediimide-diketopyrrolopyrrole-perylenediimide molecule. <i>Chemical Science</i> , 2015 , 6, 402-411	9.4	54
473	The Scope and Limitations of Ternary Blend Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2015 , 5, 1400891	21.8	105
472	Correlation of Polysiloxane Molecular Structure to Shear-Thinning Power-Law Exponent Using Elastohydrodynamic Film Thickness Measurements. <i>Journal of Tribology</i> , 2015 , 137,	1.8	2
471	Diperfluorophenyl Fused Thiophene Semiconductors for n-Type Organic Thin Film Transistors (OTFTs). <i>Advanced Electronic Materials</i> , 2015 , 1, 1500098	6.4	33
470	Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500226	6.4	21
469	Highly Dispersed SiOx/Al2O3 Catalysts Illuminate the Reactivity of Isolated Silanol Sites. <i>Angewandte Chemie</i> , 2015 , 127, 13544-13549	3.6	11
468	Highly Dispersed SiO(x)/Al2O3 Catalysts Illuminate the Reactivity of Isolated Silanol Sites. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13346-51	16.4	59
467	Cation Size Effects on the Electronic and Structural Properties of Solution-Processed InâXâD Thin Films. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500146	6.4	31
466	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5. <i>Chemical Science</i> , 2015 , 6, 4860-4866	9.4	30
465	Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)Oâ R ? Bond Hydrogenolysis. Scope and Mechanism. <i>ACS Catalysis</i> , 2015 , 5, 3675-3679	13.1	18
464	Harnessing Quantum Interference in Molecular Dielectric Materials. ACS Nano, 2015, 9, 6412-8	16.7	22
463	Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials. Journal of the American Chemical Society, 2015 , 137, 7189-96	16.4	33
462	Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15680-3	16.4	90
461	Solution-Processed Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & Description (Compared Materi</i>	9.5	12

460	Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. <i>Nano Letters</i> , 2015 , 15, 416-21	11.5	68
459	Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2876-84	16.4	222
458	Alkoxy-Functionalized Thienyl-Vinylene Polymers for Field-Effect Transistors and All-Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 2782-2793	15.6	76
457	High-Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement. <i>Advanced Energy Materials</i> , 2014 , 4, 1301938	21.8	32
456	Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts. <i>Journal of the American Chemical Society</i> , 2014 , 136, 104-7	16.4	97
455	Morphology-Performance Relationships in High-Efficiency All-Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300785	21.8	210
454	Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. <i>ACS Nano</i> , 2014 , 8, 1102-20	16.7	1909
453	Charge-trap flash-memory oxide transistors enabled by copper-zirconia composites. <i>Advanced Materials</i> , 2014 , 26, 7170-7	24	26
452	Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16345-56	16.4	290
451	Emergent Properties in Locally Ordered Molecular Materials. <i>Israel Journal of Chemistry</i> , 2014 , 54, 454-	4664	1
45 ¹	Emergent Properties in Locally Ordered Molecular Materials. <i>Israel Journal of Chemistry</i> , 2014 , 54, 454. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60		39
	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered	16.4	
450	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano</i>	16.4	39
45° 449	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70 Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant	16.4	39
45° 449 448	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70 Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. <i>Nature Chemistry</i> , 2014 , 6, 1100-7 Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. <i>ACS Catalysis</i> ,	16.4 11.5 17.6	39 1117 146
45° 449 448 447	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70 Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. <i>Nature Chemistry</i> , 2014 , 6, 1100-7 Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. <i>ACS Catalysis</i> , 2014 , 4, 999-1003 Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b']dithiophene (bBDT)	16.4 11.5 17.6	39 1117 146 80
45° 449 448 447 446	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70 Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. <i>Nature Chemistry</i> , 2014 , 6, 1100-7 Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. <i>ACS Catalysis</i> , 2014 , 4, 999-1003 Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b']dithiophene (bBDT) molecular donors. <i>Chemical Communications</i> , 2014 , 50, 4099-101	16.4 11.5 17.6 13.1 5.8	39 1117 146 80 48

442	Imide- and amide-functionalized polymer semiconductors. <i>Chemical Reviews</i> , 2014 , 114, 8943-9021	68.1	721
441	Structural and Conformational Dispersion in the Rational Design of Conjugated Polymers. <i>Macromolecules</i> , 2014 , 47, 987-992	5.5	40
440	Mesoscopic features of charge generation in organic semiconductors. <i>Accounts of Chemical Research</i> , 2014 , 47, 3385-94	24.3	66
439	Very large cooperative effects in heterobimetallic titanium-chromium catalysts for ethylene polymerization/copolymerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10460-9	16.4	79
438	Hybrid gate dielectric materials for unconventional electronic circuitry. <i>Accounts of Chemical Research</i> , 2014 , 47, 1019-28	24.3	94
437	Mesoscale molecular network formation in amorphous organic materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10055-60	11.5	66
436	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6376	7.1	49
435	Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes. <i>Advanced Materials</i> , 2014 , 26, 1098-104	24	61
434	Excitation Energy Transfer within Covalent Tetrahedral Perylenediimide Tetramers and Their Intermolecular Aggregates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16941-16950	3.8	22
433	Organic Photovoltaics: Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer (Adv. Funct. Mater. 1/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2-2	15.6	
432	Maximizing the dielectric response of molecular thin films via quantum chemical design. <i>ACS Nano</i> , 2014 , 8, 12587-600	16.7	20
431	Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOxâAl2O3. <i>Catalysis Letters</i> , 2014 , 144, 1832-1838	2.8	9
430	Modeling Polysiloxane Volume and Viscosity Variations With Molecular Structure and Thermodynamic State. <i>Journal of Tribology</i> , 2014 , 136,	1.8	4
429	Innentitelbild: Organic Photovoltaics: Elucidating the Ultra-Fast Exciton Dissociation Mechanism in Disordered Materials (Angew. Chem. 29/2014). <i>Angewandte Chemie</i> , 2014 , 126, 7500-7500	3.6	
428	"Supersaturated" self-assembled charge-selective interfacial layers for organic solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17762-73	16.4	31
427	Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. <i>Applied Physics Letters</i> , 2014 , 104, 083503	3.4	22
426	32.1: Invited Paper: Novel Approaches for Fabricating High-Performance Low-Temperature Solution-Processed Metal Oxide Transistors. <i>Digest of Technical Papers SID International Symposium</i> , 2014 , 45, 427-430	0.5	3
425	Organic Photovoltaics: Elucidating the Ultra-Fast Exciton Dissociation Mechanism in Disordered Materials. <i>Angewandte Chemie</i> , 2014 , 126, 7586-7590	3.6	3

424	Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer. <i>Advanced Functional Materials</i> , 2014 , 24, 10-26	15.6	128
423	Insight into Group 4 Metallocenium-Mediated Olefin Polymerization Reaction Coordinates Using a Metadynamics Approach. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 3491-7	6.4	4
422	What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. <i>Physical Review B</i> , 2013 , 88,	3.3	51
421	Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16456-62	3.6	74
420	Molecular and electronic-structure basis of the ambipolar behavior of naphthalimide-terthiophene derivatives: implementation in organic field-effect transistors. <i>Chemistry - A European Journal</i> , 2013 , 19, 12458-67	4.8	30
419	Polymer solar cells with enhanced fill factors. <i>Nature Photonics</i> , 2013 , 7, 825-833	33.9	806
418	Friction and Wear Protection Performance of Synthetic Siloxane Lubricants. <i>Tribology Letters</i> , 2013 , 51, 365-376	2.8	9
417	Reaction Pathways and Energetics of Etheric CâD Bond Cleavage Catalyzed by Lanthanide Triflates. <i>ACS Catalysis</i> , 2013 , 3, 1908-1914	13.1	36
416	Substantial Recoverable Energy Storage in Percolative Metallic Aluminum-Polypropylene Nanocomposites. <i>Advanced Functional Materials</i> , 2013 , 23, 3560-3569	15.6	70
415	Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 7983-8	9.5	64
414	Silver-Organic Oil Additive for High-Temperature Applications. <i>Tribology Letters</i> , 2013 , 52, 261-269	2.8	16
413	Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6532	7.1	101
412	Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. <i>Nano Letters</i> , 2013 , 13, 4810-4	11.5	82
411	Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14701-12	16.4	246
410	Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning. <i>Tribology Letters</i> , 2013 , 49, 525-538	2.8	10
409	Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 413-8	11.5	71
408	Carbostannolysis Mediated by Bis(pentamethylcyclopentadienyl)lanthanide Catalysts. Utility in Accessing Organotin Synthons. <i>Organometallics</i> , 2013 , 32, 1317-1327	3.8	18
407	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. <i>Chemical Society Reviews</i> , 2013 , 42, 2824-60	58.5	941

Traction Characteristics of Siloxanes with Aryl and Cyclohexyl Branches. Tribology Letters, 2013, 49, 301-3.81 406 Sulfur as a selective 'soft' oxidant for catalytic methane conversion probed by experiment and 405 17.6 105 theory. Nature Chemistry, 2013, 5, 104-9 Dialkoxybithiazole: a new building block for head-to-head polymer semiconductors. Journal of the 16.4 164 404 American Chemical Society, **2013**, 135, 1986-96 Fused Thiophene Semiconductors: Crystal Structurea Film Microstructure Transistor Performance 403 15.6 30 Correlations. Advanced Functional Materials, 2013, 23, 3850-3865 Reassessing the use of one-electron energetics in the design and characterization of organic 3.6 402 53 photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 4538-47 Universal statistics of parasitic shunt formation in solar cells, and its implications for cell to module 28 35.4 efficiency gap. Energy and Environmental Science, 2013, 6, 782 Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics. Journal of the 16.4 400 59 American Chemical Society, **2013**, 135, 8926-39 Optimization of graphene dry etching conditions via combined microscopic and spectroscopic 399 20 3.4 analysis. Applied Physics Letters, 2013, 102, 193111 Quantitatively enhanced reliability and uniformity of high-Idielectrics on graphene enabled by 398 11.5 57 self-assembled seeding layers. Nano Letters, 2013, 13, 1162-7 Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for 16.4 397 79 highly branched polyethylenes. Journal of the American Chemical Society, 2013, 135, 8830-3 First-principles calculation of dielectric response in molecule-based materials. Journal of the 396 16.4 20 American Chemical Society, 2013, 135, 9753-9 Sustainable synthetic approach to Etonjugated arylacetylenic semiconductors for bulk 395 15 3.7 heterojunction solar cells. RSC Advances, 2013, 3, 9288 Simple Analytic Description of Collection Efficiency in Organic Photovoltaics. Journal of Physical 6.4 16 394 Chemistry Letters, 2013, 4, 704-9 Organothorium-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Scope, Mechanism, 3.8 393 and Ancillary Ligand Effects. Organometallics, 2013, 32, 2517-2528 Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. Journal of the American Chemical 16.4 392 152 Society, 2013, 135, 10729-41 Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility. ACS Applied Materials & amp; Interfaces, 391 63 9.5 **2013**, 5, 11884-93 Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field 390 7.1 32 Effect Transistors. Journal of Materials Chemistry C, 2013, 1, 1959 Low-frequency electronic noise in single-layer MoS2 transistors. Nano Letters, 2013, 13, 4351-5 389 188

388	Near-field microwave microscopy of high-lòxides grown on graphene with an organic seeding layer. <i>Applied Physics Letters</i> , 2013 , 103, 243105	3.4	11
387	Extrinsic and intrinsic photoresponse in monodisperse carbon nanotube thin film transistors. <i>Applied Physics Letters</i> , 2013 , 102, 083104	3.4	6
386	Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18076-80	11.5	304
385	Rational design of ambipolar organic semiconductors: is core planarity central to ambipolarity in thiophene-naphthalene semiconductors?. <i>Chemistry - A European Journal</i> , 2012 , 18, 532-43	4.8	62
384	Molecularly-Engineered Lubricants: Synthesis, Activation, and Tribological Characterization of Silver Complexes as Lubricant Additives. <i>Advanced Engineering Materials</i> , 2012 , 14, 101-105	3.5	11
383	Versatile #Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2012 , 22, 48-60	15.6	71
382	In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy. <i>Advanced Energy Materials</i> , 2012 , 2, 120-128	21.8	207
381	Modeling and Design of High-Speed Ultralow Voltage GaAs Electro-optic Modulators Enabled by Transparent Conducting Materials. <i>Journal of Lightwave Technology</i> , 2012 , 30, 1-9	4	2
380	Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structureâlribology Relationships. <i>Tribology Letters</i> , 2012 , 48, 355	2.8	35
379	Design strategies for the molecular level synthesis of supported catalysts. <i>Accounts of Chemical Research</i> , 2012 , 45, 206-14	24.3	200
378	Reduced contact resistance in inkjet printed high-performance amorphous indium gallium zinc oxide transistors. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 1614-9	9.5	62
377	Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4459-4472		49
376	Combining electron-neutral building blocks with intramolecular "conformational locks" affords stable, high-mobility p- and n-channel polymer semiconductors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10966-73	16.4	174
375	Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. <i>Journal of the American Chemical Society</i> , 2012 , 134, 386-97	16.4	207
374	Quantitative statistical analysis of dielectric breakdown in zirconia-based self-assembled nanodielectrics. <i>ACS Nano</i> , 2012 , 6, 4452-60	16.7	9
373	New Semiconductors Based on 2,2?-Ethyne-1,2-diylbis[3-(alk-1-yn-1-yl)thiophene] for Organic Opto-Electronics. <i>Chemistry of Materials</i> , 2012 , 24, 2929-2942	9.6	46
372	Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18427-39	16.4	239
371	Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. <i>Nano Letters</i> , 2012 , 12, 6315-21	11.5	86

(2011-2012)

370	Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. <i>ACS Nano</i> , 2012 , 6, 7480-8	16.7	129
369	Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9593-6	16.4	113
368	Suppression of Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak Fluorocarbon Ligandâ P roduct Interactions. <i>Organometallics</i> , 2012 , 31, 3773-3789	3.8	114
367	Delayed ignition of autocatalytic combustion precursors: low-temperature nanomaterial binder approach to electronically functional oxide films. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11583-93	16.4	57
366	Modeling geminate pair dissociation in organic solar cells: high power conversion efficiencies achieved with moderate optical bandgaps. <i>Energy and Environmental Science</i> , 2012 , 5, 8343	35.4	42
365	Influence of Thiol Self-Assembled Monolayer Processing on Bottom-Contact Thin-Film Transistors Based on n-Type Organic Semiconductors. <i>Advanced Functional Materials</i> , 2012 , 22, 1856-1869	15.6	76
364	Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells. <i>Advanced Materials</i> , 2012 , 24, 2242-8	24	142
363	Polymer Solar Cells: Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells (Adv. Mater. 17/2012). <i>Advanced Materials</i> , 2012 , 24, 2362-2362	24	
362	Ligand steric and fluoroalkyl substituent effects on enchainment cooperativity and stability in bimetallic nickel(II) polymerization catalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 10715-32	4.8	98
361	A "zig-zag" naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. <i>Chemical Communications</i> , 2012 , 48, 8511-3	5.8	97
360	Naphthodithiophene-Diketopyrrolopyrrole Small Molecule Donors for Efficient Solution-Processed Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1390, 34		
359	Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1405-18	16.4	206
358	Synthesis, characterization, and photoinduced electron transfer properties of core-functionalized perylene-3,4:9,10-bis(dicarboximide)s with pendant anthracenes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19049		4
357	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3006-3012	6.4	145
356	Multinuclear olefin polymerization catalysts. <i>Chemical Reviews</i> , 2011 , 111, 2450-85	68.1	461
355	Synthesis, Characterization, and Heterogeneous Catalytic Implementation of Sulfated Alumina Nanoparticles. Arene Hydrogenation and Olefin Polymerization Properties of Supported Organozirconium Complexes. <i>ACS Catalysis</i> , 2011 , 1, 238-245	13.1	36
354	Organic solar cells: A new look at traditional models. <i>Energy and Environmental Science</i> , 2011 , 4, 4410	35.4	330
353	Solution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10239-50	16.4	95

352	Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. <i>Nature Materials</i> , 2011 , 10, 382-8	27	957
351	n-Channel semiconductor materials design for organic complementary circuits. <i>Accounts of Chemical Research</i> , 2011 , 44, 501-10	24.3	585
350	Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13685-97	16.4	213
349	Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20661-3	16.4	479
348	A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8142-5	16.4	460
347	Rylene and related diimides for organic electronics. <i>Advanced Materials</i> , 2011 , 23, 268-84	24	1366
346	Reinforced self-assembled nanodielectrics for high-performance transparent thin film transistors. <i>Advanced Materials</i> , 2011 , 23, 992-7	24	17
345	Molecular-shape-controlled photovoltaic performance probed via soluble £conjugated arylacetylenic semiconductors. <i>Advanced Materials</i> , 2011 , 23, 3827-31	24	41
344	Electronically Monodisperse Single-Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2011 , 1, 785-791	21.8	59
343	Twisted Bystem chromophores for all-optical switching. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6675-80	16.4	109
342	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. <i>Chemistry of Materials</i> , 2011 , 23, 2185-2200	9.6	36
341	Chattopadhyay et al. Reply:. <i>Physical Review Letters</i> , 2011 , 107,	7.4	9
340	High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. <i>Chemical Reviews</i> , 2010 , 110, 205-39	68.1	718
339	Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. <i>Dalton Transactions</i> , 2010 , 39, 6576-88	4.3	182
338	Marked alkyl- vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4074-5	16.4	175
337	High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. Journal of the American Chemical Society, 2010 , 132, 10352-64	16.4	210
336	All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11934-42	16.4	92
335	Weibull Analysis of Dielectric Breakdown in a Self-Assembled Nanodielectric for Organic Transistors. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3292-3297	6.4	30

334	Ethylene Polymerization Characteristics of an Electron-Deficient Nickel(II) Phenoxyiminato Catalyst Modulated by Non-Innocent Intramolecular Hydrogen Bondingâ Organometallics, 2010 , 29, 5040-5049	3.8	35
333	Self-propagating molecular assemblies as interlayers for efficient inverted bulk-heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12528-30	16.4	77
332	In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. <i>Chemistry of Materials</i> , 2010 , 22, 5154-5164	9.6	172
331	Lanthanide- and Actinide-Mediated Terminal Alkyne Hydrothiolation for the Catalytic Synthesis of Markovnikov Vinyl Sulfides. <i>Organometallics</i> , 2010 , 29, 6308-6320	3.8	75
330	Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6108-23	16.4	145
329	Flexible low-voltage organic thin-film transistors enabled by low-temperature, ambient solution-processable inorganic/organic hybrid gate dielectrics. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17426-34	16.4	104
328	Universality of non-Ohmic shunt leakage in thin-film solar cells. <i>Journal of Applied Physics</i> , 2010 , 108, 124509	2.5	158
327	Atom-Efficient CarbonâDxygen Bond Formation Processes. DFT Analysis of the Intramolecular Hydroalkoxylation/Cyclization of Alkynyl Alcohols Mediated by Lanthanide Catalysts. Organometallics, 2010, 29, 2004-2012	3.8	21
326	Organic n-channel field-effect transistors based on arylenediimide-thiophene derivatives. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8440-52	16.4	125
325	Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance. <i>Advanced Functional Materials</i> , 2010 , 20, 97-104	15.6	229
324	Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. <i>Advanced Materials</i> , 2010 , 22, 1346-50	24	448
323	High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. <i>Advanced Materials</i> , 2010 , 22, 2333-7	24	99
322	When function follows form: Effects of donor copolymer side chains on film morphology and BHJ solar cell performance. <i>Advanced Materials</i> , 2010 , 22, 5468-72	24	306
321	Combining Optical Transparency with Electrical Conductivity: Challenges and Prospects 2010 , 1-29		10
320	Transparent Metal Oxide Nanowire Electronics 2010 , 243-263		
319	Application of Transparent Oxide Semiconductors for Flexible Electronics 2010 , 265-297		2
318	Transparent OLED Displays 2010 , 299-323		1
317	Oxide-Based Electrochromics 2010 , 325-341		1

316 Transparent Solar Cells Based on Organic Polymers **2010**, 343-372

315	Organic Electro-Optic Modulators with Substantially Enhanced Performance Based on Transparent Electrodes 2010 , 373-401		
314	Naphthalenetetracarboxylic Diimides as Transparent Organic Semiconductors 2010 , 403-415		
313	Transparent Metal Oxide Semiconductors as Gas Sensors 2010 , 417-442		
312	Transparent Oxide Semiconductors: Fundamentals and Recent Progress 2010 , 31-59		6
311	p-Type Wide-Band-Gap Semiconductors for Transparent Electronics 2010 , 61-87		1
310	Lead Oxides: Synthesis and Applications 2010 , 89-101		4
309	Deposition and Performance Challenges of Transparent Conductive Oxides on Plastic Substrates 2010 , 103-140		2
308	Oxide Semiconductors: From Materials to Devices 2010 , 141-183		2
307	Carbon Nanotube Transparent Electrodes 2010 , 185-211		1
306	Application of Transparent Amorphous Oxide Thin Film Transistors to Electronic Paper 2010 , 213-229		1
305	Solution-Processed Electronics Based on Transparent Conductive Oxides 2010 , 231-242		
304	Phenacyl-thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors. <i>Chemistry - A European Journal</i> , 2010 , 16, 1911-28	4.8	57
303	Lanthanide-catalyst-mediated tandem double intramolecular hydroalkoxylation/cyclization of dialkynyl dialcohols: scope and mechanism. <i>Chemistry - A European Journal</i> , 2010 , 16, 5148-62	4.8	50
302	Functionalized dithieno[2,3-b:3?,2?-d]thiophenes (DTTs) for organic thin-film transistors. <i>Organic Electronics</i> , 2010 , 11, 801-813	3.5	62
301	Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. <i>Advanced Materials</i> , 2009 , 21, 1407-1433	24	519
300	Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. <i>Nature Materials</i> , 2009 , 8, 952-8	27	376
299	Charge conduction and breakdown mechanisms in self-assembled nanodielectrics. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7158-68	16.4	58

(2008-2009)

298	Chemisorption Pathways and Catalytic Olefin Polymerization Properties of Group 4 Mono- and Binuclear Constrained Geometry Complexes on Highly Acidic Sulfated Alumina. <i>Organometallics</i> , 2009 , 28, 2053-2061	3.8	30
297	Low-temperature solution-processed amorphous indium tin oxide field-effect transistors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10826-7	16.4	61
296	Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11080-90	16.4	51
295	Phenylene-Bridged Binuclear Organolanthanide Complexes as Catalysts for Intramolecular and Intermolecular Hydroamination. <i>Organometallics</i> , 2009 , 28, 2423-2440	3.8	78
294	Proximity and cooperativity effects in binuclear d(0) olefin polymerization catalysis. theoretical analysis of structure and reaction mechanism. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3974	1-1844	63
293	Pushâ P ull Ælectron Phosphonic-Acid-Based Self-Assembled Multilayer Nanodielectrics Fabricated in Ambient for Organic Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 1173-1175	9.6	16
292	Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. <i>Journal of the American Chemical Society</i> , 2009 , 131, 263-76	16.4	136
291	Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural and Optical Properties of amorphous zinc-indium-tin oxide thin films. ACS Applied Materials & Distriction of the Structural and Optical Properties of amorphous zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural and Optical Properties of amorphous zinc-indium-tin oxide thin films. ACS Applied Materials & Distriction of the Structural and Optical Properties of amorphous zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural and Optical Properties of amorphous zinc-indium-tin oxide thin films. ACS Applied Materials & Distriction of the Structural and Optical Properties of Distriction of the Structural and Optical Properties of Distriction of the Structural and Optical Properties of Distriction of Distri</i></i></i>	9.5	71
2 90	Hydrothermal synthesis of LnMnO3 (Ln = Hoâllu and Y): exploiting amphoterism in late rare-earth oxides. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4375		29
289	Catalyst Nuclearity Effects in Olefin Polymerization. Enhanced Activity and Comonomer Enchainment in Ethylene + Olefin Copolymerizations Mediated by Bimetallic Group 4 Phenoxyiminato Catalysts. <i>Macromolecules</i> , 2009 , 42, 1920-1933	5.5	85
288	Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5586-608	16.4	431
287	Low-Dimensional Arylacetylenes for Solution-Processable Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 2592-2594	9.6	52
286	Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. <i>Applied Physics Letters</i> , 2009 , 95, 183504	3.4	26
285	Efficient squaraine-based solution processable bulk-heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17640-1	16.4	261
284	Links between single-site heterogeneous and homogeneous catalysis. DFT analysis of pathways for organozirconium catalyst chemisorptive activation and olefin polymerization on gamma-alumina. Journal of the American Chemical Society, 2008, 130, 16533-46	16.4	51
283	Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. <i>Applied Physics Letters</i> , 2008 , 93, 083306	3.4	44
282	Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12-3	16.4	107
281	Organo-fn,d0-Mediated Synthesis of Amine-Capped Polyethylenes. Scope and Mechanism. Organometallics, 2008, 27, 2411-2420	3.8	17

280	p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2783-2787	11.5	1163
279	Synthesis and Catalytic Properties of Phenylene-Bridged Binuclear Organolanthanide Complexes. Organometallics, 2008 , 27, 155-158	3.8	68
278	Nonlinear response properties of ultralarge hyperpolarizability twisted pi-system donor-acceptor chromophores. Dramatic environmental effects on response. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 44-50	3.4	55
277	Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: scope, kinetics, and mechanism. <i>Journal of the American Chemical Society</i> , 2008 , 130, 224	6 ⁻¹⁶ 1 ⁴	115
276	Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6867-78	16.4	111
275	Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7528-9	16.4	58
274	High performance solution-processed indium oxide thin-film transistors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12580-1	16.4	166
273	Neutral Bimetallic Nickel(II) Phenoxyiminato Catalysts for Highly Branched Polyethylenes and EthyleneâNorbornene Copolymerizations. <i>Organometallics</i> , 2008 , 27, 2166-2168	3.8	101
272	Twisted Electron System Electrooptic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Nonbonded Repulsions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8005-8015	3.8	32
271	n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9679-94	16.4	267
270	1âEnoise of SnO2 nanowire transistors. <i>Applied Physics Letters</i> , 2008 , 92, 243120	3.4	48
269	High performance In2O3 nanowire transistors using organic gate nanodielectrics. <i>Applied Physics Letters</i> , 2008 , 92, 222105	3.4	34
268	Realization of dual-channel organic field-effect transistors and their applications to chemical sensing. <i>Applied Physics Letters</i> , 2008 , 93, 133304	3.4	7
267	Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements. <i>Applied Physics Letters</i> , 2008 , 92, 022104	3.4	56
266	Comparative passivation effects of self-assembled mono- and multilayers on GaAs junction field effect transistors. <i>Applied Physics Letters</i> , 2008 , 92, 123509	3.4	18
265	Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2006-25	16.4	185
264	Effects of Arylene Diimide Thin Film Growth Conditions on n-Channel OFET Performance. <i>Advanced Functional Materials</i> , 2008 , 18, 1329-1339	15.6	191
263	High-Performance Thin-Film Transistors from Solution-Processed Cadmium Selenide and a Self-Assembled Multilayer Gate Dielectric. <i>Advanced Materials</i> , 2008 , 20, 2319-2324	24	36

(2007-2008)

262	Mild amidation of aldehydes with amines mediated by lanthanide catalysts. <i>Organic Letters</i> , 2008 , 10, 317-9	6.2	188
261	Functionalized anthradithiophenes for organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1029		98
260	Organosilane Effects on Organotitanium-Catalyzed Styrene Polymerization. <i>Organometallics</i> , 2007 , 26, 2960-2963	3.8	13
259	Stereochemical control mechanisms in propylene polymerization mediated by C1-symmetric CGC titanium catalyst centers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7327-38	16.4	31
258	Mechanistic investigation of intramolecular aminoalkene and aminoalkyne hydroamination/cyclization catalyzed by highly electrophilic, tetravalent constrained geometry 4d and 5f complexes. Evidence for an M-N sigma-bonded insertive pathway. <i>Journal of the American</i>	16.4	184
257	Chemical Society, 2007 , 129, 6149-67 Effective, selective hydroalkoxylation/cyclization of alkynyl and allenyl alcohols mediated by lanthanide catalysts. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7244-5	16.4	140
256	Copper(I) tert-Butylthiolato Clusters as Single-Source Precursors for High-Quality Chalcocite Thin Films: Precursor Chemistry in Solution and the Solid State. <i>Chemistry of Materials</i> , 2007 , 19, 2768-2779	9.6	18
255	Constrained geometry organoactinides as versatile catalysts for the intramolecular hydroamination/cyclization of primary and secondary amines having diverse tethered C-C unsaturation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4253-71	16.4	151
254	Retrospective: Frank Albert Cotton (1930-2007). Science, 2007, 316, 214	33.3	
253	Organolanthanide-catalyzed synthesis of amine-capped polyethylenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10102-3	16.4	49
252	Cyanonaphthalene Diimide Semiconductors for Air-Stable, Flexible, and Optically Transparent n-Channel Field-Effect Transistors. <i>Chemistry of Materials</i> , 2007 , 19, 2703-2705	9.6	228
251	Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: scope and mechanism of simultaneous polyolefin branch and functional group introduction. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2938-53	16.4	57
250	Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3267	16.4 7-86	230
249	Lanthanide Trichlorides by Reaction of Lanthanide Metals with Mercury(II) Chloride in Tetrahydrofuran. <i>Inorganic Syntheses</i> , 2007 , 136-141		12
248	Transition Metal Carbonyl Derivatives of Magnesium. <i>Inorganic Syntheses</i> , 2007 , 56-61		5
247	New electrically conductive polymers. Dopant and architectural effects on the collective properties of cofacially joined metallophthalocyanines. <i>Journal of Polymer Science, Polymer Symposia</i> , 2007 , 70, 1-2	9	7
246	Phase stability of heteroepitaxial polydomain BaTiO3 thin films. <i>Journal of Materials Research</i> , 2007 , 22, 1384-1389	2.5	5
245	41. 1,2,3,4,5-Pentamethylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 181-185		18

244 Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III). *Inorganic Syntheses*, **2007**, 260-263

	nthanide Trichlorides by Reaction of Lanthanide Metals with Mercury(II) Chloride in trahydrofuran. <i>Inorganic Syntheses</i> , 2007 , 286-291		6
	lorotris (IB-Cyclopentadienyl) Complexes of Uranium(IV) and Thorium(IV). <i>Inorganic Syntheses</i> , 07 , 300-304		
241 1,2	,3,4,5-Pentamethylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 317-320		2
	latile 即iketonate Complexes of Calcium(II), Strontium(II), and Barium(II). <i>Inorganic Syntheses</i> , 07 , 1-7		
239 [1,0	,12:21,26-Diimino-19,14:28,33.35,5-Trinitrilo-5H-Pentabenzo[C,H,M,R,W] 6,11,16,21]-Pentaazacyclopentacosinato] (2-)]-Dioxouranium (VI) (Uranyl Superphthalocyanine)1. <i>organic Syntheses</i> , 2007 , 97-100		4
238 18.	Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III). Inorganic Syntheses, 2007, 84-86		27
₂₃₇ pol	verse stereocontrol effects induced by weakly coordinating anions. Stereospecific olefin lymerization pathways at archetypal C(s)- and C(1)-symmetric metallocenium catalysts using ono- and polynuclear halo-perfluoroarylmetalates as cocatalysts. <i>Journal of the American</i>	16.4	62
	ganophosphine Oxide/Sulfide-Substituted Lanthanide Binaphtholate Catalysts for antioselective Hydroamination/Cyclization. <i>Organometallics</i> , 2007 , 26, 365-376	3.8	108
	ning orbital energetics in arylene diimide semiconductors. materials design for ambient stability n-type charge transport. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15259-78	16.4	887
	lymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. ence, 2007 , 318, 76-80	33.3	344
233 Lar	ge-Scale Synthesis of 1,2,3,4,5-Penta-Methylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 193-198		11
	erfacial Phenomena Affecting Charge Transport In Small Molecule Organic Thin-Film Transistors. Interials Research Society Symposia Proceedings, 2006 , 965, 1		
	ph-mobility bottom-contact n-channel organic transistors and their use in complementary ring cillators. <i>Applied Physics Letters</i> , 2006 , 88, 082104	3.4	122
220	clearity and cooperativity effects in binuclear catalysts and cocatalysts for olefin polymerization. oceedings of the National Academy of Sciences of the United States of America, 2006 , 103, 15295-302	11.5	204
229 Co	ganolanthanide-Catalyzed Hydroamination/Cyclization Reactions of Aminoalkynes. mputational Investigation of Mechanism, Lanthanide Identity, and Substituent Effects for a Very othermic CâN Bond-Forming Process. <i>Organometallics</i> , 2006 , 25, 5533-5539	3.8	79
228 str	orocarbon-modified organic semiconductors: molecular architecture, electronic, and crystal ucture tuning of arene- versus fluoroarene-thiophene oligomer thin-film properties. <i>Journal of a American Chemical Society</i> , 2006 , 128, 5792-801	16.4	280
227 ele	te dielectric chemical structure-organic field-effect transistor performance correlations for ctron, hole, and ambipolar organic semiconductors. <i>Journal of the American Chemical Society</i> , 06 , 128, 12851-69	16.4	418

(2005-2006)

226	Diversity in Weakly Coordinating Anions. Mono- and Polynuclear Halo(perfluoroaryl)metalates as Cocatalysts for Stereospecific Olefin Polymerization: Synthesis, Structure, and Reactivity. Organometallics, 2006, 25, 2833-2850	3.8	50
225	Recyclable Polymer-Supported Organolanthanide Hydroamination Catalysts. Immobilization and Activation via Dynamic Transamination. <i>Organometallics</i> , 2006 , 25, 4763-4772	3.8	37
224	X-Shaped electro-optic chromophore with remarkably blue-shifted optical absorption. Synthesis, characterization, linear/nonlinear optical properties, self-assembly, and thin film microstructural characteristics. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6194-205	16.4	125
223	Efficient synthesis and structural characteristics of zwitterionic twisted pi-electron system biaryls. <i>Organic Letters</i> , 2005 , 7, 3721-4	6.2	41
222	Organolanthanide-catalyzed synthesis of phosphine-terminated polyethylenes. Scope and mechanism. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6311-24	16.4	63
221	B(C6F5)3- vs Al(C6F5)3-derived metallocenium ion pairs. Structural, thermochemical, and structural dynamic divergences. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10898-909	16.4	61
220	Energetics and Mechanism of Organolanthanide-Mediated Phosphinoalkene Hydrophosphination/Cyclization. A Density Functional Theory Analysis. <i>Organometallics</i> , 2005 , 24, 4995	-3003	66
219	Coordination copolymerization of severely encumbered isoalkenes with ethylene: enhanced enchainment mediated by binuclear catalysts and cocatalysts. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14756-68	16.4	81
218	Significant Proximity and Cocatalyst Effects in Binuclear Catalysis for Olefin Polymerization. <i>Macromolecules</i> , 2005 , 38, 9015-9027	5.5	75
217	Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility N-channel semiconductors and ambipolar transport. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1348-9	16.4	325
216	Incisive structure-spectroscopic correlation in oligothiophenes functionalized with (+/-) inductive/mesomeric fluorine groups: joint Raman and DFT study. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13364-72	16.4	28
215	Negative capacitance in organic light-emitting diodes. <i>Applied Physics Letters</i> , 2005 , 86, 073509	3.4	75
214	Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13808-9	16.4	116
213	Exceptional molecular hyperpolarizabilities in twisted pi-electron system chromophores. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7922-5	16.4	115
212	Exceptional Molecular Hyperpolarizabilities in Twisted Œlectron System Chromophores. <i>Angewandte Chemie</i> , 2005 , 117, 8136-8139	3.6	12
211	Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. <i>Advanced Materials</i> , 2005 , 17, 1705-1725	24	901
210	The interface between heterogeneous and homogeneous catalysis. <i>Topics in Catalysis</i> , 2005 , 34, 1-4	2.3	5
209	Low temperature deposition of epitaxial BaTiO3 films in a rotating disk vertical MOCVD reactor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1674		15

Synthesis and Unprecedented Electro-Optic Response Properties of Twisted Esystem Chromophores. *Materials Research Society Symposia Proceedings*, **2005**, 866, 126

207	Molecular Dielectric Multilayers for Ultra-Low-Voltage Organic Thin Film Transistors. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		
206	Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4678-82	11.5	234
205	Novel Dielectric Materials for Organic Electronics. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		
204	Highly Transparent and Conductive CdO Thin Films as Anodes for Organic Light-Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		1
203	A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 84, 3873-3875	3.4	33
202	Spatially-resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy. <i>Applied Physics Letters</i> , 2004 , 85, 344-346	3.4	25
201	Electron-Transporting Thiophene-Based Semiconductors Exhibiting Very High Field Effect Mobilities. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 814, 96		
200	NOE and PGSE NMR spectroscopic studies of solution structure and aggregation in metallocenium ion-pairs. <i>Journal of the American Chemical Society</i> , 2004 , 126, 1448-64	16.4	153
199	Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nTs; n = 2-6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. <i>Journal of the American Chemical Society</i> , 2004 , 126, 134	16.4 30-501	344
198	Polynuclear olefin polymerization catalysis: proximity and cocatalyst effects lead to significantly increased polyethylene molecular weight and comonomer enchainment levels. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4937-40	16.4	79
197	High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 6363	16.4 -6	760
196	High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). <i>Angewandte Chemie</i> , 2004 , 116, 6523-6526	3.6	132
195	Bimetallic catalysis for styrene homopolymerization and ethylene-styrene copolymerization. Exceptional comonomer selectivity and insertion regiochemistry. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6542-3	16.4	139
194	Self-assembled electrooptic thin films with remarkably blue-shifted optical absorption based on an X-shaped chromophore. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15974-5	16.4	71
193	d0/fn-Mediated Ring-Opening Ziegler Polymerization (ROZP) and Copolymerization with Mono-and Disubstituted Methylenecyclopropanes. Diverse Mechanisms and a New Chain-Capping Termination Process. <i>Organometallics</i> , 2004 , 23, 740-754	3.8	20
192	New Mononuclear and Polynuclear Perfluoroarylmetalate Cocatalysts for Stereospecific Olefin Polymerization. <i>Organometallics</i> , 2004 , 23, 932-935	3.8	52
191	Zirconium hydrocarbyl chemisorption on sulfated metal oxides: new supports, chemisorption pathways, and implications for catalysis. <i>Langmuir</i> , 2004 , 20, 9456-62	4	36

(2003-2004)

190	Marked counteranion effects on single-site olefin polymerization processes. Correlations of ion pair structure and dynamics with polymerization activity, chain transfer, and syndioselectivity. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4605-25	16.4	140
189	Self-Assembled Electrooptic Superlattices. A Theoretical Study of Multilayer Formation and Response Using DonorâAcceptor, Hydrogen-Bond Building Blocks. <i>Chemistry of Materials</i> , 2004 , 16, 1848	21854	ļ 44
188	Energetics and Mechanism of Organolanthanide-Mediated Aminoalkene Hydroamination/Cyclization. A Density Functional Theory Analysis. <i>Organometallics</i> , 2004 , 23, 4097-4104	3.8	105
187	Sulfated Tin Oxide Nanoparticles as Supports for Molecule-Based Olefin Polymerization Catalysts. Nano Letters, 2004 , 4, 1557-1559	11.5	47
186	Covalently Linked Heterobimetallic Catalysts for Olefin Polymerization. <i>Organometallics</i> , 2004 , 23, 51125	5814 5814	88
185	Layer-by-Layer Assembly of Molecular Materials for Electrooptical Applications. <i>ACS Symposium Series</i> , 2004 , 30-43	0.4	6
184	Organolanthanide-catalyzed synthesis of phosphine-terminated polyethylenes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12764-5	16.4	55
183	Organolanthanide-catalyzed hydroamination. <i>Accounts of Chemical Research</i> , 2004 , 37, 673-86	24.3	947
182	Intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanide complexes. Scope, diastereo- and enantioselectivity, and reaction mechanism. Journal of the American Chemical Society, 2003, 125, 15878-92	16.4	164
181	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 1281		2
180	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 769, 1181		2
179	C2-symmetric bis(oxazolinato)lanthanide catalysts for enantioselective intramolecular hydroamination/cyclization. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14768-83	16.4	275
178	Twisted Esystem electro-optic chromophores. A CIS vs. MRD-CI theoretical investigation. <i>Computational and Theoretical Chemistry</i> , 2003 , 633, 227-235		46
177	Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. Significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10788-9	16.4	102
176	Metallocene polymerization catalyst ion-pair aggregation by cryoscopy and pulsed field gradient spin-echo NMR diffusion measurements. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5256-7	16.4	59
175	Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9414-23	16.4	352
174	Diverse Pathways in Ring-Opening Ziegler Polymerization of an Annulated Methylenecyclopropane. A New Single-Site Chain Transfer Mechanism. <i>Macromolecules</i> , 2003 , 36, 1775-1778	5.5	12
173	Synthesis and Catalytic Characteristics of Novel Constrained-Geometry Organoactinide Catalysts. The First Example of Actinide-Mediated Intramolecular Hydroamination. <i>Organometallics</i> , 2003 , 22, 4836	3 <u>:8</u> 838	106

172	Homoleptic Lanthanide Alkyl and Amide Precatalysts Efficiently Mediate Intramolecular Hydrophosphination/Cyclization. Observations on Scope and Mechanism. <i>Organometallics</i> , 2003 , 22, 4630-4632	3.8	122
171	Electronic structure of conducting polymers: Limitations of oligomer extrapolation approximations and effects of heteroatoms. <i>Physical Review B</i> , 2003 , 68,	3.3	133
170	Synthesis, spectroscopy, and catalytic properties of cationic organozirconium adsorbates on "super acidic" sulfated alumina. "Single-site" heterogeneous catalysts with virtually 100 active sites. Journal of the American Chemical Society, 2003, 125, 4325-31	16.4	114
169	Realization of high-efficiency/high-luminance small-molecule organic light-emitting diodes: synergistic effects of siloxane anode functionalization/hole-injection layers, and hole/exciton-blocking/electron-transport layers. <i>Applied Physics Letters</i> , 2003 , 82, 331-333	3.4	48
168	Small molecule organic light-emitting diodes can exhibit high performance without conventional hole transport layers. <i>Applied Physics Letters</i> , 2002 , 81, 3528-3530	3.4	40
167	High-resolution solid-state (13)C NMR studies of chemisorbed organometallics. Chemisorptive formation of cation-like and alkylidene organotantalum complexes on high surface area inorganic oxides. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7103-10	16.4	52
166	Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium-indium-oxide thin films. <i>Journal of Materials Research</i> , 2002 , 17, 3155-3162	2.5	25
165	Bisperfluorophenyl-Substituted Thiophene Oligomers. Organic Semiconductors with Complementary-Type Carrier Mobility. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 736, 1		
164	Catalyst/cocatalyst nuclearity effects in single-site polymerization. Enhanced polyethylene branching and alpha-olefin comonomer enchainment in polymerizations mediated by binuclear catalysts and cocatalysts via a new enchainment pathway. <i>Journal of the American Chemical Society</i> ,	16.4	153
163	âWidening the Roofâl Synthesis and Characterization of New Chiral C1-Symmetric Octahydrofluorenyl Organolanthanide Catalysts and Their Implementation in the Stereoselective Cyclizations of Aminoalkenes and Phosphinoalkenes. <i>Organometallics</i> , 2002 , 21, 283-292	3.8	142
162	Aziniumâ(EBridge)âPyrrole NLO-Phores: Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties#. <i>Chemistry of Materials</i> , 2002 , 14, 4996-5005	9.6	92
161	Realization of Expeditious Layer-by-Layer Siloxane-Based Self-assembly as an Efficient Route to Structurally Regular Acentric Superlattices with Large Electro-optic Responses. <i>Chemistry of Materials</i> , 2002 , 14, 4982-4989	9.6	63
160	Surface Organozirconium Electrophiles Activated by Chemisorption on åBuper Acidicål Sulfated Zirconia as Hydrogenation and Polymerization Catalysts. A Synthetic, Structural, and Mechanistic Catalytic Study. <i>Organometallics</i> , 2002 , 21, 1788-1806	3.8	64
159	Weakly Coordinating Al-, Nb-, Ta-, Y-, and La-Based Perfluoroaryloxymetalate Anions as Cocatalyst Components for Single-Site Olefin Polymerization. <i>Organometallics</i> , 2002 , 21, 3691-3702	3.8	42
158	New Perfluoroarylborane Activators for Single-Site Olefin Polymerization. Acidity and Cocatalytic Properties of a aBuperacidicalPerfluorodiboraanthracene. <i>Organometallics</i> , 2002 , 21, 4159-4168	3.8	62
157	Polynuclear catalysis: enhancement of enchainment cooperativity between different single-site olefin polymerization catalysts by ion pairing with a binuclear cocatalyst. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13966-7	16.4	77
156	Energetic, Structural, and Dynamic Aspects of Ethylene Polymerization Mediated by Homogeneous Single-Site âllonstrained Geometry Catalystsâlln the Presence of Cocatalyst and Solvation: An Investigation at the ab Initio Quantum Chemical Level. <i>Organometallics</i> , 2002 , 21, 5594-5612	3.8	105
155	New Low-melting Cadmium Precursors for the Detailed Study of Texture Effects in MOCVD Derived CdO Thin-Films. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 721, 1		1

Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices. <i>Applied Physics Letters</i> , 2001 , 79, 587-589	3.4	26
Specular x-ray reflectivity study of ordering in self-assembled organic and hybrid organicâlhorganic electro-optic multilayer films. <i>Journal of Chemical Physics</i> , 2001 , 115, 6722-6727	3.9	39
Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes. <i>Langmuir</i> , 2001 , 17, 2051-2056	4	60
Metal and Ancillary Ligand Structural Effects on Ethylene Insertion Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. Organometallics, 2001, 20, 4006-4017	3.8	52
Design and Preparation of Zwitterionic Organic Thin Films: Self-Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials. <i>Langmuir</i> , 2001 , 17, 5939-5942	4	29
Silanolytic Chain Transfer in Olefin Polymerization with Supported Single-Site ZieglerâNatta Catalysts. <i>Macromolecules</i> , 2001 , 34, 4676-4679	5.5	23
Adsorption of Polar Molecules on a Molecular Surface. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 2881-2	2884	31
Strong ion pairing effects on single-site olefin polymerization: mechanistic insights in syndiospecific propylene enchainment. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11803-4	16.4	63
Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7287-91	16.4	92
Al-, Nb-, and Ta-Based Perfluoroaryloxide Anions as Cocatalysts for Metallocene-Mediated ZieglerâNatta Olefin Polymerization. <i>Organometallics</i> , 2000 , 19, 1625-1627	3.8	52
Development and Implementation of New Volatile Cd and Zn Precursors for the Growth of Transparent Conducting Oxide Thin Films Via Mocvd. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 623, 317		4
Volatile, Fluorine-Free Ketoiminate Precursors for MOCVD Growth of Lanthanide Oxide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 623, 371		1
MOCVD of Epitaxial BaTiO3 Films Using a Liquid Barium Precursor. <i>Chemical Vapor Deposition</i> , 2000 , 6, 175-177		30
Polydentate Amines as CVD Precursor Ancillary Ligands. Epitaxial MgO Thin-Film Growth Using a Highly Volatile, Thermally and Air-Stable Magnesium Precursor. <i>Chemical Vapor Deposition</i> , 2000 , 6, 180-	-183	21
Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. <i>Chemical Reviews</i> , 2000 , 100, 1391-434	68.1	1610
Analysis of the fluoride effect on the phase-selective growth of TlBa2Ca2Cu3O9â⊠ thin films: Phase evolution and microstructure development. <i>Journal of Materials Research</i> , 2000 , 15, 1083-1097	2.5	4
Chemical and Thin-Film Strategies for New Transparent Conducting Oxides. MRS Bulletin, 2000 , 25, 45-5	3 .2	295
Ultrahigh-Temperature Polymers for Second-Order Nonlinear Optics. Synthesis and Properties of Robust, Processable, Chromophore-Embedded Polyimides. <i>Chemistry of Materials</i> , 2000 , 12, 1679-1693	9.6	40
	Specular x-ray reflectivity study of ordering in self-assembled organic and hybrid organicalinorganic electro-optic multilayer films. <i>Journal of Chemical Physics</i> , 2001, 115, 6722-6727 Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes. <i>Langmuir</i> , 2001, 17, 2051-205 Metal and Ancillary Ligand Structural Effects on Ethylene Insertion Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. <i>Organometallics</i> , 2001, 20, 4006-4017 Design and Preparation of Zwitterionic Organic Thin Films: Self-Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials. <i>Langmuir</i> , 2001, 17, 5939-5942 Silanolytic Chain Transfer in Olefin Polymerization with Supported Single-Site Ziegleräßlatta Catalysts. <i>Macromolecules</i> , 2001, 34, 4676-4679 Adsorption of Polar Molecules on a Molecular Surface. <i>Journal of Physical Chemistry B</i> , 2001, 105, 2881-3819. Strong ion pairing effects on single-site olefin polymerization: mechanistic insights in syndiospecific propylene enchainment. <i>Journal of the American Chemical Society</i> , 2001, 123, 11803-4 Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. <i>Journal of the American Chemical Society</i> , 2001, 123, 7287-91 Al-, Nb-, and Ta-Based Perfluoroaryloxide Anions as Cocatalysts for Metallocene-Mediated Ziegleräßlatta Olefin Polymerization. <i>Organometallics</i> , 2000, 19, 1625-1627 Development and Implementation of New Volatile Cd and Zn Precursors for the Growth of Transparent Conducting Oxide Thin Films Via MocvU. <i>Materials Research Society Symposia Proceedings</i> , 2000, 623, 317 Wolatle, Fluorine-Free & Ketoiminate Precursors for MOCVD Growth of Lanthanide Oxide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2000, 623, 317 Polydentate Amines as CVD Precursor Ancillary Ligands. Epitaxial MgO	chromophoric superlattices. Applied Physics Letters, 2001, 79, 587-589 Specular x-ray reflectivity study of ordering in self-assembled organic and hybrid organicalhorganic electro-optic multilayer films. Journal of Chemical Physics, 2001, 115, 6722-6727 Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes. Longmuir, 2001, 17, 2051-2054 Metal and Ancillary Ligand Structural Effects on Ethylene Insertion Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. Organizative Quantum Chemical Investigation at Various ab Initio Levels. Organization Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. Organization Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. Organization Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Society Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials. 4 Langmuir, 2001, 17, 5939-5942 Silanolytic Chain Transfer in Olefin Polymerization with Supported Single-Site ZieglerisNatta Catalysts. Macromolecules, 2001, 34, 4676-4679 Adsorption of Polar Molecules on a Molecular Surface. Journal of Physical Chemistry B, 2001, 105, 2881-2884 Strong ion pairing effects on single-site olefin polymerization: mechanistic insights in syndiospecific propylene enchainment. Journal of the American Chemical Society, 2001, 123, 11803-4 16-4 Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. Journal of the American Chemical Society, 2001, 123, 7287-91 16-4 Al., Nb., and Ta-Based Perfluoroaryloxide Anions as Cocatalysts for Metallocene-Mediated ZiegleriaNata Olefin Polymerization. Organometallics, 2000, 19, 1625-1627 Development and Imple

136	Bis(Pentafluorophenyl)(2-perfluorobiphenylyl)borane. A New Perfluoroarylborane Cocatalyst for Single-Site Olefin Polymerization. <i>Organometallics</i> , 2000 , 19, 3332-3337	3.8	42
135	Ligand Substituent, Anion, and Solvation Effects on Ion Pair Structure, Thermodynamic Stability, and Structural Mobility in âtionstrained Geometryât⊡lefin Polymerization Catalysts:□an Ab Initio Quantum Chemical Investigation. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12764-12777	16.4	131
134	Metal-Alkyl Group Effects on the Thermodynamic Stability and Stereochemical Mobility of B(C6F5)3-Derived Zr and Hf Metallocenium Ion-Pairs. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10358-10370	16.4	89
133	Second-order nonlinear optical response of thin films containing organic chromophores. Theoretical aspects. <i>Israel Journal of Chemistry</i> , 2000 , 40, 123-128	3.4	2
132	Expedient route to volatile zirconium metal-organic chemical vapor deposition precursors using amide synthons and implementation in yttria-stabilized zirconia film growth. <i>Journal of Materials Research</i> , 1999 , 14, 12-15	2.5	14
131	Film microstructure-deposition condition relationships in the growth of epitaxial NiO films by metalorganic chemical vapor deposition on oxide and metal substrates. <i>Journal of Materials Research</i> , 1999 , 14, 1132-1136	2.5	14
130	ZieglerâNatta catalyst activation. Thermodynamic and kinetic aspects of metallocenium ion-pair formation, dissociation, and structural reorganization. <i>Topics in Catalysis</i> , 1999 , 7, 97-106	2.3	70
129	Highly Volatile, Low Melting, Fluorine-Free Precursors for Metal-Organic Chemical Vapor Deposition of Lanthanide Oxide-Containing Thin Films. <i>Chemical Vapor Deposition</i> , 1999 , 5, 65-69		24
128	Intramolecular Hydroamination/Cyclization of Aminoallenes Catalyzed by Organolanthanide Complexes. Scope and Mechanistic Aspects. <i>Organometallics</i> , 1999 , 18, 1949-1960	3.8	123
127	Metal-Organic Chemical Vapor Deposition of Zn-In-Sn-O and Ga-In-Sn-O Transparent Conducting Oxide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 607, 345		9
126	Significant ZirconiumâAlkyl Group Effects on Ion Pair Formation Thermodynamics and Structural Reorganization Dynamics in Zirconocenium Alkyls. <i>Organometallics</i> , 1999 , 18, 2410-2412	3.8	54
125	Silicon-Modified ZieglerâNatta Polymerization. Catalytic Approaches to Silyl-Capped and Silyl-Linked Polyolefins Using âBingle-SiteâlCationic ZieglerâNatta Catalysts. <i>Journal of the American Chemical Society</i> , 1999 , 121, 8791-8802	16.4	58
124	Constrained Geometry Organolanthanide Catalysts. Synthesis, Structural Characterization, and Enhanced Aminoalkene Hydroamination/Cyclization Activity. <i>Organometallics</i> , 1999 , 18, 2568-2570	3.8	160
123	Organolanthanide-Mediated Silanolytic Chain Transfer Processes. Scope and Mechanism of Single Reactor Catalytic Routes to Silapolyolefins. <i>Macromolecules</i> , 1999 , 32, 981-988	5.5	59
122	Self-Assembly Processes for Organic Led Transport Layers and Electrode Passivation. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 558, 459		
121	Self-Assembly Processes for Organic Led Transport Layers and Electrode Passivation. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 561, 201		
120	Highly Volatile, Low Melting, Fluorine-Free Precursors for Metal-Organic Chemical Vapor Deposition of Lanthanide Oxide-Containing Thin Films 1999 , 5, 65		1
119	Novel Metal-Organic Chemical Vapor Deposition / T1F Annealing Route to Thin Films of Tl1Ba2Ca2Cu3O9+x. <i>Journal of Superconductivity and Novel Magnetism</i> , 1998 , 11, 133-134		2

118	Organolanthanide-Catalyzed Intra- and Intermolecular Tandem CâN and CâN Bond-Forming Processes of Aminodialkenes, Aminodialkynes, Aminoalkeneynes, and Aminoalkynes. New Regiospecific Approaches to Pyrrolizidine, Indolizidine, Pyrrole, and Pyrazine Skeletons. <i>Journal of</i>	16.4	193
117	the American Chemical Society, 1998, 120, 1757-1771 Stability of Bilayer Films of YBa2Cu3O7 and Y-ZrO2 Grown on LaAlO3 by Pulsed Organometallic Beam Epitaxy. Chemical Vapor Deposition, 1998, 4, 99-102		2
116	Supported Organometallics. Highly Electrophilic Cationic Metallocene Hydrogenation and Polymerization Catalysts Formed via Protonolytic Chemisorption on Sulfated Zirconia. <i>Journal of the American Chemical Society</i> , 1998 , 120, 13533-13534	16.4	49
115	Highly Electrophilic Olefin Polymerization Catalysts. Counteranion and Solvent Effects on Constrained Geometry Catalyst Ion Pair Structure and Reactivity. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8257-8258	16.4	107
114	Highly Electrophilic Olefin Polymerization Catalysts. Quantitative Reaction Coordinates for Fluoroarylborane/Alumoxane Methide Abstraction and Ion-Pair Reorganization in Group 4 Metallocene and âtonstrained Geometryâtcatalysts. <i>Journal of the American Chemical Society</i> , 1998 ,	16.4	159
113	120, 1772-1784 Remarkable NLO Response and Infrared Absorption in Simple Twisted Molecular EChromophores. Journal of the American Chemical Society, 1998, 120, 11174-11181	16.4	129
112	Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoallenes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4871-4872	16.4	157
111	Silanolytic Chain Transfer in ZieglerâNatta Catalysis. Organotitanium-Mediated Formation of New Silapolyolefins and Polyolefin Architectures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4019-4	402 0	67
110	Sterically Encumbered (Perfluoroaryl) Borane and Aluminate Cocatalysts for Tuning CationâAnion Ion Pair Structure and Reactivity in Metallocene Polymerization Processes. A Synthetic, Structural, and Polymerization Study. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6287-6305	16.4	218
109	New Organo-Lewis Acids. Tris(therfluoronaphthyl)borane (PNB) as a Highly Active Cocatalyst for Metallocene-Mediated ZieglerâNatta Eolefin Polymerization. <i>Organometallics</i> , 1998 , 17, 3996-4003	3.8	83
108	Liquid source metalâBrganic chemical-vapor deposition of high-quality YBa2Cu3O7â⊠ films on polycrystalline silver substrates. <i>Applied Physics Letters</i> , 1998 , 72, 1253-1255	3.4	16
107	Epitaxial KNbo3 and its Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 541, 741		1
106	Specular x-ray reflectivity studies of microstructure and ordering in self-assembled multilayers. <i>Journal of Chemical Physics</i> , 1997 , 107, 645-652	3.9	27
105	Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition. <i>Journal of Materials Research</i> , 1997 , 12, 1214-1236	2.5	41
104	MOCVD Precursor Delivery Monitored and Controlled Using UV Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 474, 69		
103	Molecular Self-Assembly Routes to Optically Functional Thin Films: Electroluminescent Multilayer Structures. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 488, 385		1
102	Metal-Organic Chemical Vapor Deposition Routes to Films of Transparent Conducting Oxides. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 495, 3		2
101	Atomic Resolution X-ray Standing Wave Microstructural Characterization of NLO-Active Self-Assembled Chromophoric Superlattices. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2205-	2214	42

100	Enantiomerically Pure Organolanthanides for Asymmetric Catalysis. Synthesis, Structures, and Catalytic Properties of Complexes Having Pseudo-meso-Me2Si(店-C5H3R)(店-C5H3R*) Ancillary Ligation. <i>Organometallics</i> , 1997 , 16, 4486-4492	3.8	57
99	Conformationally-Induced Geometric Electron Localization. Interrupted Conjugation, Very Large Hyperpolarizabilities, and Sizable Infrared Absorption in Simple Twisted Molecular Chromophores. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3155-3156	16.4	67
98	Cationic Metallocene Polymerization Catalysts Based on Tetrakis(pentafluorophenyl)borate and Its Derivatives. Probing the Limits of Anion alloncoordinationallia a Synthetic, Solution Dynamic, Structural, and Catalytic Olefin Polymerization Study. <i>Organometallics</i> , 1997 , 16, 842-857	3.8	249
97	Ancillary Ligand Effects on Organo-f-Element Reactivity. ansa-Metallocenes with Bridge-Tethered Donors. <i>Organometallics</i> , 1997 , 16, 4705-4711	3.8	66
96	Very Large Counteranion Modulation of Cationic Metallocene Polymerization Activity and Stereoregulation by a Sterically Congested (Perfluoroaryl)fluoroaluminate. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2582-2583	16.4	106
95	A Novel Phenolate âtonstrained GeometryâlCatalyst System. Efficient Synthesis, Structural Characterization, and ⊞lefin Polymerization Catalysis. <i>Organometallics</i> , 1997 , 16, 5958-5963	3.8	139
94	Organolanthanide-Catalyzed Imine Hydrogenation. Scope, Selectivity, Mechanistic Observations, and Unusual Byproducts. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3745-3755	16.4	90
93	Synthesis, Characterization, Optical Spectroscopic, Electronic Structure, and Second-Order Nonlinear Optical (NLO) Properties of a Novel Class of DonorâAcceptor Bis(salicylaldiminato)nickel(II) Schiff Base NLO Chromophores. <i>Journal of the American Chemical</i>	16.4	248
92	âllonstrained GeometryâlDialkyl Catalysts. Efficient Syntheses, Câll Bond Activation Chemistry, MonomerâlDimer Equilibration, and Eolefin Polymerization Catalysis. <i>Organometallics</i> , 1997 , 16, 3649-3	3637	200
91	Ancillary Ligand Effects in Chiral C1-Symmetric ansa-Metallocene Catalysts for Stereoregular Defin Polymerization. alwingspanal Modification with Octahydrofluorene. <i>Organometallics</i> , 1997 , 16, 2503-2505	3.8	31
90	New materials for superconducting electronics: Epitaxial growth of LaSrGaO4 and PrSrGaO4 dielectric thin films by MOCVD. <i>Chemical Vapor Deposition</i> , 1997 , 3, 78-81		3
89	Diverse Mechanistic Pathways and Selectivities in Organo-f-Element-Catalyzed Hydroamination. Intermolecular Organolanthanide-Catalyzed Alkyne and Alkene Hydroamination. <i>Organometallics</i> , 1996 , 15, 3770-3772	3.8	191
88	Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 9295-9306	16.4	215
87	Rational Design of Molecules with Large Hyperpolarizabilities. Electric Field, Solvent Polarity, and Bond Length Alternation Effects on Merocyanine Dye Linear and Nonlinear Optical Properties. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9714-9725		187
86	Electronic Structure, Molecular Geometry, and Bonding Energetics in Zerovalent Yttrium and Gadolinium Bis(arene) Sandwich Complexes. A Theoretical ab Initio Studyâ (**) Organometallics, 1996, 15, 3985-3989	3.8	21
85	Ring-Opening Ziegler Polymerization of Methylenecycloalkanes Catalyzed by Highly Electrophilic d0/fn Metallocenes. Reactivity, Scope, Reaction Mechanism, and Routes to Functionalized Polyolefins. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7900-7913	16.4	53
84	Coordinative Unsaturation in Chiral Organolanthanides. Synthetic and Asymmetric Catalytic Mechanistic Study of Organoyttrium and -lutetium Complexes Having Pseudo-meso Me2Si(IB-RC5H3)(IB-R*C5H3) Ancillary Ligation1. <i>Organometallics</i> , 1996 , 15, 1765-1784	3.8	106
83	Poly(1,4:2,2-butanetetrayl). A Novel Polyspirane via Metallocenium-Catalyzed Ring-Openingâlipping-Up Polymerization of Methylenecyclopropane. <i>Journal of the American Chemical Society</i> , 1996 , 118, 1547-1548	16.4	25

[1995-1996]

82	Organo-Lewis Acids As Cocatalysts in Cationic Metallocene Polymerization Catalysis. Unusual Characteristics of Sterically Encumbered Tris(perfluorobiphenyl)borane. <i>Journal of the American Chemical Society</i> , 1996 , 118, 12451-12452	16.4	166
81	Supramolecular Approaches to Second-Order Nonlinear Optical Materials. Self-Assembly and Microstructural Characterization of Intrinsically Acentric [(Aminophenyl)azo]pyridinium Superlattices. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8034-8042	16.4	156
80	Effect of Higher Excited Configurations on the Linear and Nonlinear Optical Properties of Organic Molecules. <i>ACS Symposium Series</i> , 1996 , 116-132	0.4	1
79	Fabrication and characteristics of weak links between fland flaxis normal grains of Y1Ba2Cu3O7â\(\text{A}\). Journal of Materials Research, 1996 , 11, 1086-1093	2.5	
78	Microstructure of epitaxial potassium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1996 , 68, 761-763	3.4	37
77	Epitaxial growth of (Sr1âNCax)CuO2 thin film with the infinite-layer structure by metal-organic chemical vapor deposition. <i>Applied Physics Letters</i> , 1996 , 69, 1951-1953	3.4	3
76	Solvent Effects on the Molecular Quadratic Hyperpolarizabilites. ACS Symposium Series, 1995, 57-65	0.4	3
75	Epitaxial growth of SrTiO3 thin films by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 66, 3298-3300	3.4	27
74	Epitaxial potassium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 67, 365-367	3.4	34
73	YBa2Cu3O7âIbn MgO films grown by pulsed organometallic beam epitaxy and a grain boundary junction application. <i>Journal of Materials Research</i> , 1995 , 10, 2700-2707	2.5	9
72	Nonlinear optical properties of textured strontium barium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 66, 1726-1728	3.4	44
71	Cationic Metallocene Olefin Polymerization Catalysts. Thermodynamic and Kinetic Parameters for Ion Pair Formation, Dissociation, and Reorganization. <i>Journal of the American Chemical Society</i> , 1995 , 117, 6128-6129	16.4	112
70	Chiral C1-Symmetric Group 4 Metallocenes as Catalysts for Stereoregular .alphaOlefin Polymerization. Metal, Ancillary Ligand, and Counteranion Effects. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12114-12129	16.4	105
69	Deposition of Potassium Niobate Thin Films by Metalorganic Chemical Vapor Deposition and their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 392, 183		4
68	Liquid Source MOCVD of High Quality YBa2Cu3O7â\ Films on Polycrystalline and Amorphous Substrates. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 415, 255		2
67	Epitaxial Niobate Thin Films and Their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 211		15
66	Entwurf, Synthese und Eigenschaften von Moleklaggregaten mit ausgepråten nichtlinearen optischen Eigenschaften zweiter Ordnung. <i>Angewandte Chemie</i> , 1995 , 107, 167-187	3.6	65
65	Neue Materialien mit nichtlinearen optischen Eigenschaften durch topotaktische Selbstorganisation zu azentrischen, Chromophore enthaltenden Supergittern. <i>Angewandte Chemie</i> , 1995 , 107, 1646-1649	3.6	5

64	Design, Synthesis, and Properties of Molecule-Based Assemblies with Large Second-Order Optical Nonlinearities. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 155-173		602
63	The Effect of Chromophore Architecture and Deposition Conditions on the Optical and Microstructural Characteristics of Self-Assembled Chromophoric Thin Film NLO Materials. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 240, 9-16		4
62	MOCVD Routes to Thin Metal Oxide Films for superconducting electronics. <i>Advanced Materials</i> , 1994 , 6, 719-730	24	61
61	Recent developments in the surface and catalytic chemistry of supported organoactinides. <i>Journal of Molecular Catalysis</i> , 1994 , 86, 23-50		36
60	Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. <i>Chemical Reviews</i> , 1994 , 94, 195-242	68.1	1942
59	Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo-Lewis Acid Tris(pentafluorophenyl)borane. A Synthetic,Structural, Solution Dynamic, and Polymerization Catalytic Study. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10015-10031	16.4	666
58	Electronic Structure and Quadratic Hyperpolarizabilities in Organotransition-Metal Chromophores Having Weakly Coupled .piNetworks. Unusual Mechanisms for Second-Order Response. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10089-10102	16.4	194
57	Frequency-Dependent Second Harmonic Generation in Acentric Chromophoric Self-Assembled NLO Materials. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 119		
56	Deposition of Strontium Barium Niobate Thin Films by Metal-Organic Chemical Vapor Deposition and Their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 361, 167		
55	The Role of Intermolecular Interactions in Molecular Electronics. Advances in Chemistry Series, 1994, 223	-241	3
54	Chiral, non-C2 symmetric zirconocene complexes as catalysts for stereoregular .alphaolefin polymerization. <i>Journal of the American Chemical Society</i> , 1993 , 115, 3326-3327	16.4	68
53	Materials for superconducting electronics: In situ growth of PrGaO3 thin films by metalorganic chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1993 , 11, 1431-1434	2.9	7
52	Suitability of metalorganic chemical vapor deposition-derived PrGaO3 films as buffer layers for YBa2Cu3O7â⊠ pulsed laser deposition. <i>Applied Physics Letters</i> , 1993 , 63, 3639-3641	3.4	6
51	Metal-Organic Chemical Vapor Deposition of Epitaxial Tl2Ba2Ca2Cu3O10â\ Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 335, 273		1
50	In Situ Heteroepitaxial Bi2Sr2CaCu2O8 Thin Films Prepared by Metalorganic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 335, 285		
49	Structure of organometallic chemical vapor deposited BaTiO3 thin films on LaAIO3. <i>Journal of Electronic Materials</i> , 1993 , 22, 701-703	1.9	19
48	Organolanthanide-catalyzed hydroboration of olefins. <i>Journal of the American Chemical Society</i> , 1992 , 114, 9220-9221	16.4	155
47	Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition. <i>Applied Physics Letters</i> , 1992 , 60, 41-43	3.4	134

46	Synthesis and Nonlinear Optical Characteristics of Chromophore-Functionalized Polymers Having Chromophore-Centered Hydrogen-Bonding and Crosslinking Groups. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 39		1
45	Layer-by-Layer Molecular Assembly Approaches to the Construction of Thin Films Having High Second-Order Optical Nonlinearities. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 779		2
44	Deposition of Superconducting Tl-Ba-Ca-Cu-O Phases on Metal Foils by Metal-Organic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 275, 365		
43	Heteroepitaxial Bi2Sr2CaCu2Ox Superconducting thin films Deposited on LaAlO3 by Solid Phase Epitaxy and OMCVD. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 275, 443		1
42	Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. <i>Accounts of Chemical Research</i> , 1992 , 25, 57-65	24.3	425
41	Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation. <i>Journal of the American Chemical Society</i> , 1992 , 114, 10358-10368	16.4	80
40	Calculation of quadratic hyperpolarizabilities for organic lelectron chromophores: Molecular geometry sensitivity of second-order nonlinear optical response. <i>International Journal of Quantum Chemistry</i> , 1992 , 43, 61-82	2.1	60
39	Organolanthanide-catalyzed hydroamination. A kinetic, mechanistic, and diastereoselectivity study of the cyclization of N-unprotected amino olefins. <i>Journal of the American Chemical Society</i> , 1992 , 114, 275-294	16.4	460
38	Cationic Metallocene Polymerization Catalysts. Synthesis and Properities of the First Base-Free Zirconocene Hydride. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 1375-1377		105
37	Kationische Metallocen-Polymerisationskatalysatoren: Das erste basenfreie Zirconocenhydrid. Angewandte Chemie, 1992 , 104, 1406-1408	3.6	26
36	Chromophoreâ B olymer Assemblies for Nonlinear Optical Materials. <i>ACS Symposium Series</i> , 1991 , 226-249) .4	5
35	Interfaces between Molecular and Polymeric âMetalsâElectrically Conductive, Structure-Enforced Assemblies of Metallomacrocycles. <i>Angewandte Chemie International Edition in English</i> , 1990 , 29, 857-879)	171
34	Importance of Metalâlligand Bond Energies in Organometallic Chemistry: An Overview. <i>ACS Symposium Series</i> , 1990 , 1-17	0.4	3
33	Metal and Ancillary Coordination Effects on Organolanthanideâlligand Bond Enthalpies. <i>ACS Symposium Series</i> , 1990 , 159-174	0.4	22
32	Rational Design and Construction of Polymers with Large Second-Order Optical Nonlinearities. Synthetic Strategies for Enhanced Chromophore Number Densities and Frequency Doubling Temporal Stabilities. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1990 ,		2
31	189, 93-106 Organometallic chemical vapor deposition of strontium titanate. <i>Journal of Applied Physics</i> , 1990 , 67, 3858-3861	2.5	58
30	Organometallic Chemical Vapor Deposition of Strontium Titanate thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 168, 375		3
29	A New Hybrid Pvd/Omcvd Route to High-Tc Superconducting Thin Films of Tl-Ba-Ca-Cu-O. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 169, 619		2

28	Routes to High-Tc Superconducting Tl-Ba-Ca-Cu-O Films Using Organometallic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 169, 623		1
27	Vicrostructure and Electrical Properties of Kevlar/Polypyrrole Composite Fibers. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 175, 331		
26	Third-Order Optical Susceptibilities of Molecular and Polymeric Materials. Symmetry, Frequency, and Chromophore Structure Dependence as Probed by Electron Theory. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 134, 665		
25	Electrically Conductive Molecular Composites Based Upon Ppbt and Metallophthalocyanines: Processing, Microstructure, and Electrochemistry. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 134, 673		
24	Routes to Molecular Metals with Widely Variable Counterions and Band-Filling. <i>ACS Symposium Series</i> , 1988 , 224-237	0.4	5
23	Nonlinear Optical Materials Based on Benzobisthiazole. Electronic Structure/Molecular Architecture/Polarizability/Hyperpolarizability Relationships Derived from Electron Theory. <i>Materials Research Society Symposia Proceedings</i> , 1987 , 109, 149		2
22	Interactions, Architecture, and Bandwidths in âMolecular Metalsâ∏A Synthetic and Electronic Structure Study of Monomeric and Cofacially Joined Dimeric Germanium Phthalocyanines. <i>Israel Journal of Chemistry</i> , 1986 , 27, 337-346	3.4	
21	Actinacyclobutanes. Thermochemistry based strategies for the ring-opening stoichiometric activation of saturated and olefinic hydrocarbons. <i>Journal of the American Chemical Society</i> , 1986 , 108, 425-37	16.4	111
20	Direct Imaging of The Lattice In Poly(Phthalocyaninato-Germoxane) Single Crystals. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 357-360		7
19	Electronic Properties of The Conductive Polymers [Si(Pc)O]xy)N With Different Doping Agents. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 349-352		12
18	Electrically Conductive Polymers Composed of Cofacially Joined Metallomacrocycles. Studies of Architecture and Electronic Structure in Phthalocyanine Materials by High Resolution Solid State NMR. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 337-344		2
17	Electrically conductive metallomacrocyclic assemblies. <i>Science</i> , 1985 , 227, 881-9	33.3	232
16	Metallophthalocyanine Based Low-Dimensional Polymers and Related Molecular Compounds. Charge Transport and Electronic Structure Studies of A Metal-Free âMolecular Metalâ∏ <i>Molecular</i> Crystals and Liquid Crystals, 1985 , 118, 353-356		4
15	New Information On 2H-TaS2 Intercalation Chemistry With Organic Bases. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 121, 145-148		5
14	Thermochemically based strategies for carbon-hydrogen activation on saturated hydrocarbon molecules. Ring-opening reactions of a thoracyclobutane with tetramethylsilane and methane. <i>Journal of the American Chemical Society</i> , 1984 , 106, 2214-2216	16.4	75
13	Enforced Segregated Stacking in Metallomacrocyclic âMETALS.âINew Information on Phthalocyanine Donor-Acceptor Interactions. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 355-367		20
12	Unusual Carbon Monoxide Activation, Reduction, and Homologation Reactions of 5f-Element Organometallics. <i>ACS Symposium Series</i> , 1981 , 53-78	0.4	7
11	Strategies for Control of Lattice Architecture in Low-Dimensional Molecular Metals: Assembly of Partially Oxidized Face-to-Face Linked Arrays of Metallomacrocycles. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1981 , 16, 275-298		36

LIST OF PUBLICATIONS

10	RATIONAL SYNTHESIS OF NEW UNIDIMENSIONAL SOLIDS: CHEMICAL AND PHYSICAL STUDIES OF MIXED-VALENCE POLYIODIDES*. <i>Annals of the New York Academy of Sciences</i> , 1978 , 313, 594-616	6.5	58
9	New low-dimensional molecular metals: single-crystal electrical conductivity of nickel phthalocyanine iodide. <i>Science</i> , 1978 , 200, 47-8	33.3	84
8	To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2% when the Donor Polymer is Halogen-Free. <i>Advanced Energy Materials</i> ,2102648	21.8	4
7	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells. <i>Advanced Energy Materials</i> ,21021	72 ^{1.8}	10
6	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. <i>Energy and Environmental Science</i> ,	35.4	8
5	Supported Vanadium Catalysts for Selective Sulfur-Oxidative Dehydrogenation of Propane. <i>ChemCatChem</i> ,	5.2	1
4	Chlorotris(IICyclopentadienyl)Complexes of Uranium(IV) and Thorium(IV). Inorganic Syntheses,147-151		20
3	Bis(IB-Cyclooctatetraene)Uranium(IV). Inorganic Syntheses,149-154		3
2	Chemistry and Spectroscopy of f-Element Organometallics. Part 1: the Lanthanides. <i>Progress in Inorganic Chemistry</i> ,51-107		53
1	2,3-Diphenylthieno[3,4-b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. <i>ACS Energy Letters</i> ,2118-2127	20.1	4