Tobin J Marks

List of Publications by Citations

Source: https://exaly.com/author-pdf/1806890/tobin-j-marks-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

747	67,639 citations	129	237
papers		h-index	g-index
792 ext. papers	73,659 ext. citations	12.4 avg, IF	8.24 L-index

#	Paper	IF	Citations
747	Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. <i>Chemical Reviews</i> , 1994 , 94, 195-242	68.1	1942
746	Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. <i>ACS Nano</i> , 2014 , 8, 1102-20	16.7	1909
745	Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. <i>Chemical Reviews</i> , 2000 , 100, 1391-434	68.1	1610
744	Rylene and related diimides for organic electronics. Advanced Materials, 2011, 23, 268-84	24	1366
743	p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 2783-2787	11.5	1163
742	Effective passivation of exfoliated black phosphorus transistors against ambient degradation. <i>Nano Letters</i> , 2014 , 14, 6964-70	11.5	1117
741	Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. <i>Nature Materials</i> , 2011 , 10, 382-8	27	957
740	Organolanthanide-catalyzed hydroamination. Accounts of Chemical Research, 2004, 37, 673-86	24.3	947
739	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. <i>Chemical Society Reviews</i> , 2013 , 42, 2824-60	58.5	941
738	Metal oxides for optoelectronic applications. <i>Nature Materials</i> , 2016 , 15, 383-96	27	903
737	Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. <i>Advanced Materials</i> , 2005 , 17, 1705-1725	24	901
736	Mixed-dimensional van der Waals heterostructures. <i>Nature Materials</i> , 2017 , 16, 170-181	27	897
735	Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15259-78	16.4	887
734	Polymer solar cells with enhanced fill factors. <i>Nature Photonics</i> , 2013 , 7, 825-833	33.9	806
733	High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 636	53 ⁻¹⁶ ·4	760
732	Imide- and amide-functionalized polymer semiconductors. <i>Chemical Reviews</i> , 2014 , 114, 8943-9021	68.1	721
731	High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. <i>Chemical Reviews</i> , 2010 , 110, 205-39	68.1	718

(2009-1994)

730	Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo-Lewis Acid Tris(pentafluorophenyl)borane. A Synthetic,Structural, Solution Dynamic, and Polymerization Catalytic Study. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10015-10031	16.4	666
729	Design, Synthesis, and Properties of Molecule-Based Assemblies with Large Second-Order Optical Nonlinearities. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 155-173		602
728	n-Channel semiconductor materials design for organic complementary circuits. <i>Accounts of Chemical Research</i> , 2011 , 44, 501-10	24.3	585
727	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. <i>Nature Chemistry</i> , 2016 , 8, 597-602	17.6	574
726	Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. <i>Advanced Materials</i> , 2009 , 21, 1407-1433	24	519
725	Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20661-3	16.4	479
724	Multinuclear olefin polymerization catalysts. <i>Chemical Reviews</i> , 2011 , 111, 2450-85	68.1	461
723	A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8142-5	16.4	460
722	Organolanthanide-catalyzed hydroamination. A kinetic, mechanistic, and diastereoselectivity study of the cyclization of N-unprotected amino olefins. <i>Journal of the American Chemical Society</i> , 1992 , 114, 275-294	16.4	460
721	Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11445-52	16.4	455
720	Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. <i>Advanced Materials</i> , 2010 , 22, 1346-50	24	448
719	Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5586-608	16.4	431
718	Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15379-85	16.4	427
717	Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. <i>Nature Nanotechnology</i> , 2015 , 10, 403-6	28.7	426
716	Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. <i>Accounts of Chemical Research</i> , 1992 , 25, 57-65	24.3	425
715	Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12851-69	16.4	418
7 ¹ 4	Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. <i>Chemical Reviews</i> , 2017 , 117, 10291-10318	68.1	377
713	Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. <i>Nature Materials</i> , 2009 , 8, 952-8	27	376

712	High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. <i>Chemical Reviews</i> , 2018 , 118, 5690-5754	68.1	354
711	Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9414-23	16.4	352
710	Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. <i>Science</i> , 2007 , 318, 76-80	33.3	344
709	Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nTs; n = 2-6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. <i>Journal of the American Chemical Society</i> , 2004 , 126, 134	16.4 180-50	344 1
708	Organic solar cells: A new look at traditional models. <i>Energy and Environmental Science</i> , 2011 , 4, 4410	35.4	330
707	Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility N-channel semiconductors and ambipolar transport. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1348-9	16.4	325
706	When function follows form: Effects of donor copolymer side chains on film morphology and BHJ solar cell performance. <i>Advanced Materials</i> , 2010 , 22, 5468-72	24	306
705	All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4129-4142	16.4	305
704	Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18076-80	11.5	304
703	Chemical and Thin-Film Strategies for New Transparent Conducting Oxides. MRS Bulletin, 2000, 25, 45-	53.2	295
702	Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16345-56	16.4	290
701	Fluorocarbon-modified organic semiconductors: molecular architecture, electronic, and crystal structure tuning of arene- versus fluoroarene-thiophene oligomer thin-film properties. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5792-801	16.4	280
700	Orthogonal tandem catalysis. <i>Nature Chemistry</i> , 2015 , 7, 477-82	17.6	278
699	C2-symmetric bis(oxazolinato)lanthanide catalysts for enantioselective intramolecular hydroamination/cyclization. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14768-83	16.4	275
698	n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9679-94	16.4	267
697	Efficient squaraine-based solution processable bulk-heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17640-1	16.4	261
696	New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH))(CHNH)PbI: Structure, Properties, and Photovoltaic Performance. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16297-16309	16.4	251
695	Cationic Metallocene Polymerization Catalysts Based on Tetrakis(pentafluorophenyl)borate and Its Derivatives. Probing the Limits of Anion alloncoordinationally a Synthetic, Solution Dynamic,	3.8	249

(2014-1997)

694	Synthesis, Characterization, Optical Spectroscopic, Electronic Structure, and Second-Order Nonlinear Optical (NLO) Properties of a Novel Class of DonorâAcceptor Bis(salicylaldiminato)nickel(II) Schiff Base NLO Chromophores. <i>Journal of the American Chemical</i>	16.4	248	
693	Society, 1997, 119, 9550-9557 Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. <i>Journal of the American Chemical Society</i> , 2013, 135, 14701-12	16.4	246	
692	Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. <i>Nano Letters</i> , 2016 , 16, 497-503	11.5	240	
691	Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18427-39	16.4)	239	
690	All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1240-51	16.4	237	
689	Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4678-82	11.5	234	
688	Electrically conductive metallomacrocyclic assemblies. <i>Science</i> , 1985 , 227, 881-9	33.3	232	
687	Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesdenâ P opper Perovskites for High-Efficiency Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 170	00979	231	
686	Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. <i>Journal of the American Chemical Society</i> , 2007 , 129, 326	16.4 7-86	230	
685	Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance. <i>Advanced Functional Materials</i> , 2010 , 20, 97-104	15.6	229	
684	Cyanonaphthalene Diimide Semiconductors for Air-Stable, Flexible, and Optically Transparent n-Channel Field-Effect Transistors. <i>Chemistry of Materials</i> , 2007 , 19, 2703-2705	9.6	228	
683	Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3274-3287	16.4	226	
682	Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2876-84	16.4	222	
681	Sterically Encumbered (Perfluoroaryl) Borane and Aluminate Cocatalysts for Tuning CationâAnion Ion Pair Structure and Reactivity in Metallocene Polymerization Processes. A Synthetic, Structural, and Polymerization Study. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6287-6305	16.4	218	
680	Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoalkynes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 9295-9306	16.4	215	
679	Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13685-97	16.4	213	
678	Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4414-23	16.4	210	
677	Morphology-Performance Relationships in High-Efficiency All-Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300785	21.8	210	

676	High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. Journal of the American Chemical Society, 2010 , 132, 10352-64	16.4	210
675	In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy. <i>Advanced Energy Materials</i> , 2012 , 2, 120-128	21.8	207
674	Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. <i>Journal of the American Chemical Society</i> , 2012 , 134, 386-97	16.4	207
673	Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1405-18	16.4	206
672	Nuclearity and cooperativity effects in binuclear catalysts and cocatalysts for olefin polymerization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15295-302	11.5	204
671	Design strategies for the molecular level synthesis of supported catalysts. <i>Accounts of Chemical Research</i> , 2012 , 45, 206-14	24.3	200
670	âltonstrained GeometryâlDialkyl Catalysts. Efficient Syntheses, Câll Bond Activation Chemistry, MonomerâDimer Equilibration, and ⊞lefin Polymerization Catalysis. <i>Organometallics</i> , 1997 , 16, 3649-36	5 3 7	200
669	Electronic Structure and Quadratic Hyperpolarizabilities in Organotransition-Metal Chromophores Having Weakly Coupled .piNetworks. Unusual Mechanisms for Second-Order Response. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10089-10102	16.4	194
668	Organolanthanide-Catalyzed Intra- and Intermolecular Tandem CâN and CâC Bond-Forming Processes of Aminodialkenes, Aminodialkynes, Aminoalkeneynes, and Aminoalkynes. New Regiospecific Approaches to Pyrrolizidine, Indolizidine, Pyrrole, and Pyrazine Skeletons. <i>Journal of</i>	16.4	193
667	the American Chemical Society, 1998, 120, 1757-1771 Effects of Arylene Diimide Thin Film Growth Conditions on n-Channel OFET Performance. Advanced Functional Materials, 2008, 18, 1329-1339	15.6	191
666	Diverse Mechanistic Pathways and Selectivities in Organo-f-Element-Catalyzed Hydroamination. Intermolecular Organolanthanide-Catalyzed Alkyne and Alkene Hydroamination. <i>Organometallics</i> , 1996 , 15, 3770-3772	3.8	191
665	Low-frequency electronic noise in single-layer MoS2 transistors. <i>Nano Letters</i> , 2013 , 13, 4351-5	11.5	188
664	Mild amidation of aldehydes with amines mediated by lanthanide catalysts. <i>Organic Letters</i> , 2008 , 10, 317-9	6.2	188
663	Rational Design of Molecules with Large Hyperpolarizabilities. Electric Field, Solvent Polarity, and Bond Length Alternation Effects on Merocyanine Dye Linear and Nonlinear Optical Properties. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9714-9725		187
662	Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2006-25	16.4	185
661	Mechanistic investigation of intramolecular aminoalkene and aminoalkyne hydroamination/cyclization catalyzed by highly electrophilic, tetravalent constrained geometry 4d and 5f complexes. Evidence for an M-N sigma-bonded insertive pathway. <i>Journal of the American</i>	16.4	184
660	Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. <i>Dalton Transactions</i> , 2010 , 39, 6576-88	4.3	182
659	Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects. <i>Accounts of Chemical Research</i> , 2014 , 47, 2545-57	24.3	175

(2002-2010)

658	Marked alkyl- vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4074-5	16.4	175
657	Combining electron-neutral building blocks with intramolecular "conformational locks" affords stable, high-mobility p- and n-channel polymer semiconductors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10966-73	16.4	174
656	In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. <i>Chemistry of Materials</i> , 2010 , 22, 5154-5164	9.6	172
655	Interfaces between Molecular and Polymeric âMetalsâElectrically Conductive, Structure-Enforced Assemblies of Metallomacrocycles. <i>Angewandte Chemie International Edition in English</i> , 1990 , 29, 857-8	379	171
654	High performance solution-processed indium oxide thin-film transistors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12580-1	16.4	166
653	Organo-Lewis Acids As Cocatalysts in Cationic Metallocene Polymerization Catalysis. Unusual Characteristics of Sterically Encumbered Tris(perfluorobiphenyl)borane. <i>Journal of the American Chemical Society</i> , 1996 , 118, 12451-12452	16.4	166
652	Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. <i>Advanced Energy Materials</i> , 2017 , 7, 1601660	21.8	164
651	Dialkoxybithiazole: a new building block for head-to-head polymer semiconductors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1986-96	16.4	164
650	Intramolecular hydroamination/cyclization of conjugated aminodienes catalyzed by organolanthanide complexes. Scope, diastereo- and enantioselectivity, and reaction mechanism. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15878-92	16.4	164
649	Solution-processed carbon nanotube thin-film complementary static random access memory. <i>Nature Nanotechnology</i> , 2015 , 10, 944-8	28.7	163
648	Constrained Geometry Organolanthanide Catalysts. Synthesis, Structural Characterization, and Enhanced Aminoalkene Hydroamination/Cyclization Activity. <i>Organometallics</i> , 1999 , 18, 2568-2570	3.8	160
647	Highly Electrophilic Olefin Polymerization Catalysts. Quantitative Reaction Coordinates for Fluoroarylborane/Alumoxane Methide Abstraction and Ion-Pair Reorganization in Group 4 Metallocene and âtonstrained GeometryâtCatalysts. <i>Journal of the American Chemical Society</i> , 1998 ,	16.4	159
646	Universality of non-Ohmic shunt leakage in thin-film solar cells. <i>Journal of Applied Physics</i> , 2010 , 108, 124509	2.5	158
645	Organolanthanide-Catalyzed Intramolecular Hydroamination/Cyclization of Aminoallenes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4871-4872	16.4	157
644	Supramolecular Approaches to Second-Order Nonlinear Optical Materials. Self-Assembly and Microstructural Characterization of Intrinsically Acentric [(Aminophenyl)azo]pyridinium Superlattices. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8034-8042	16.4	156
643	Organolanthanide-catalyzed hydroboration of olefins. <i>Journal of the American Chemical Society</i> , 1992 , 114, 9220-9221	16.4	155
642	NOE and PGSE NMR spectroscopic studies of solution structure and aggregation in metallocenium ion-pairs. <i>Journal of the American Chemical Society</i> , 2004 , 126, 1448-64	16.4	153
641	Catalyst/cocatalyst nuclearity effects in single-site polymerization. Enhanced polyethylene branching and alpha-olefin comonomer enchainment in polymerizations mediated by binuclear catalysts and cocatalysts via a new enchainment pathway. <i>Journal of the American Chemical Society</i> ,	16.4	153

640	Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10729-41	16.4	152
639	Structural and thermodynamic limits of layer thickness in 2D halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 58-66	11.5	152
638	Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 3217-22	11.5	151
637	Constrained geometry organoactinides as versatile catalysts for the intramolecular hydroamination/cyclization of primary and secondary amines having diverse tethered C-C unsaturation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4253-71	16.4	151
636	Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors. <i>Chemical Science</i> , 2016 , 7, 3543-3555	9.4	149
635	Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. <i>Nature Chemistry</i> , 2014 , 6, 1100-7	17.6	146
634	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3006-3012	6.4	145
633	Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6108-23	16.4	145
632	Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells. <i>Advanced Materials</i> , 2012 , 24, 2242-8	24	142
631	âlWidening the Roofâll Synthesis and Characterization of New Chiral C1-Symmetric Octahydrofluorenyl Organolanthanide Catalysts and Their Implementation in the Stereoselective Cyclizations of Aminoalkenes and Phosphinoalkenes. <i>Organometallics</i> , 2002 , 21, 283-292	3.8	142
630	Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600502	21.8	141
629	Effective, selective hydroalkoxylation/cyclization of alkynyl and allenyl alcohols mediated by lanthanide catalysts. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7244-5	16.4	140
628	Marked counteranion effects on single-site olefin polymerization processes. Correlations of ion pair structure and dynamics with polymerization activity, chain transfer, and syndioselectivity. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4605-25	16.4	140
627	A Novel Phenolate âlconstrained Geometryâlcatalyst System. Efficient Synthesis, Structural Characterization, and £Olefin Polymerization Catalysis. <i>Organometallics</i> , 1997 , 16, 5958-5963	3.8	139
626	Bimetallic catalysis for styrene homopolymerization and ethylene-styrene copolymerization. Exceptional comonomer selectivity and insertion regiochemistry. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6542-3	16.4	139
625	Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. <i>Journal of the American Chemical Society</i> , 2009 , 131, 263-76	16.4	136
624	Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition. <i>Applied Physics Letters</i> , 1992 , 60, 41-43	3.4	134
623	Electronic structure of conducting polymers: Limitations of oligomer extrapolation approximations and effects of heteroatoms. <i>Physical Review B</i> , 2003 , 68,	3.3	133

(2015-2004)

622	High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). <i>Angewandte Chemie</i> , 2004 , 116, 6523-6526	3.6	132
621	Ligand Substituent, Anion, and Solvation Effects on Ion Pair Structure, Thermodynamic Stability, and Structural Mobility in âtonstrained Geometryâtolefin Polymerization Catalysts:□an Ab Initio Quantum Chemical Investigation. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12764-12777	16.4	131
620	Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11749-61	16.4	130
619	Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. <i>ACS Nano</i> , 2012 , 6, 7480-8	16.7	129
618	Remarkable NLO Response and Infrared Absorption in Simple Twisted Molecular Echromophores. Journal of the American Chemical Society, 1998, 120, 11174-11181	16.4	129
617	Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer. <i>Advanced Functional Materials</i> , 2014 , 24, 10-26	15.6	128
616	Organic n-channel field-effect transistors based on arylenediimide-thiophene derivatives. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8440-52	16.4	125
615	X-Shaped electro-optic chromophore with remarkably blue-shifted optical absorption. Synthesis, characterization, linear/nonlinear optical properties, self-assembly, and thin film microstructural characteristics. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6194-205	16.4	125
614	Intramolecular Hydroamination/Cyclization of Aminoallenes Catalyzed by Organolanthanide Complexes. Scope and Mechanistic Aspects. <i>Organometallics</i> , 1999 , 18, 1949-1960	3.8	123
613	A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics. <i>Advanced Materials</i> , 2018 , 30, e1801898	24	123
612	High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators. <i>Applied Physics Letters</i> , 2006 , 88, 082104	3.4	122
611	Homoleptic Lanthanide Alkyl and Amide Precatalysts Efficiently Mediate Intramolecular Hydrophosphination/Cyclization. Observations on Scope and Mechanism. <i>Organometallics</i> , 2003 , 22, 4630-4632	3.8	122
610	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14532-14547	16.4	120
609	Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 388-393	16.4	118
608	Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15699-15709	16.4	117
607	Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins. <i>Catalysis Letters</i> , 2015 , 145, 3-14	2.8	116
606	Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13808-9	16.4	116
605	Investigation of band-offsets at monolayer-multilayer MoSâlJunctions by scanning photocurrent microscopy. <i>Nano Letters</i> , 2015 , 15, 2278-84	11.5	115

60.	Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: scope, kinetics, and mechanism. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2246	5-61 ⁴	115	
60	Exceptional molecular hyperpolarizabilities in twisted pi-electron system chromophores. Angewandte Chemie - International Edition, 2005, 44, 7922-5	16.4	115	
60.	Suppression of Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak Fluorocarbon Ligandâ P roduct Interactions. <i>Organometallics</i> , 2012 , 31, 3773-3789	3.8	114	
60	Synthesis, spectroscopy, and catalytic properties of cationic organozirconium adsorbates on "super acidic" sulfated alumina. "Single-site" heterogeneous catalysts with virtually 100 active sites. Journal of the American Chemical Society, 2003, 125, 4325-31	16.4	114	
60	The Next Breakthrough for Organic Photovoltaics?. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 77-84	6.4	113	
599	Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors. Journal of the American Chemical Society, 2012 , 134, 9593-6	16.4	113	
598	Cationic Metallocene Olefin Polymerization Catalysts. Thermodynamic and Kinetic Parameters for Ion Pair Formation, Dissociation, and Reorganization. <i>Journal of the American Chemical Society</i> , 1995 , 117, 6128-6129	16.4	112	
597	Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6867-78	16.4	111	
59	Actinacyclobutanes. Thermochemistry based strategies for the ring-opening stoichiometric activation of saturated and olefinic hydrocarbons. <i>Journal of the American Chemical Society</i> , 1986 , 108, 425-37	16.4	111	
59.	Twisted Bystem chromophores for all-optical switching. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6675-80	16.4	109	
594	Organophosphine Oxide/Sulfide-Substituted Lanthanide Binaphtholate Catalysts for Enantioselective Hydroamination/Cyclization. <i>Organometallics</i> , 2007 , 26, 365-376	3.8	108	
593	Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12-3	16.4	107	
592	Highly Electrophilic Olefin Polymerization Catalysts. Counteranion and Solvent Effects on Constrained Geometry Catalyst Ion Pair Structure and Reactivity. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8257-8258	16.4	107	
591	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. <i>Nano Letters</i> , 2016 , 16, 2580-5	11.5	106	
59	Very Large Counteranion Modulation of Cationic Metallocene Polymerization Activity and Stereoregulation by a Sterically Congested (Perfluoroaryl)fluoroaluminate. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2582-2583	16.4	106	
589	Synthesis and Catalytic Characteristics of Novel Constrained-Geometry Organoactinide Catalysts. The First Example of Actinide-Mediated Intramolecular Hydroamination. <i>Organometallics</i> , 2003 , 22, 483	<i>હે</i> -8838	3 ¹⁰⁶	
588	Coordinative Unsaturation in Chiral Organolanthanides. Synthetic and Asymmetric Catalytic 8 Mechanistic Study of Organoyttrium and -lutetium Complexes Having Pseudo-meso Me2Si(店-RC5H3)(店-R*C5H3) Ancillary Ligation1. <i>Organometallics</i> , 1996 , 15, 1765-1784	3.8	106	
58	The Scope and Limitations of Ternary Blend Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2015 . 5. 1400891	21.8	105	

586	Sulfur as a selective 'soft' oxidant for catalytic methane conversion probed by experiment and theory. <i>Nature Chemistry</i> , 2013 , 5, 104-9	17.6	105
585	Energetics and Mechanism of Organolanthanide-Mediated Aminoalkene Hydroamination/Cyclization. A Density Functional Theory Analysis. <i>Organometallics</i> , 2004 , 23, 4097-410)4 ^{3.8}	105
584	Energetic, Structural, and Dynamic Aspects of Ethylene Polymerization Mediated by Homogeneous Single-Site âtonstrained Geometry Catalystsâtin the Presence of Cocatalyst and Solvation: An Investigation at the ab Initio Quantum Chemical Level. <i>Organometallics</i> , 2002 , 21, 5594-5612	3.8	105
583	Chiral C1-Symmetric Group 4 Metallocenes as Catalysts for Stereoregular .alphaOlefin Polymerization. Metal, Ancillary Ligand, and Counteranion Effects. <i>Journal of the American Chemical Society</i> , 1995 , 117, 12114-12129	16.4	105
582	Cationic Metallocene Polymerization Catalysts. Synthesis and Properities of the First Base-Free Zirconocene Hydride. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 1375-1377		105
581	Flexible low-voltage organic thin-film transistors enabled by low-temperature, ambient solution-processable inorganic/organic hybrid gate dielectrics. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17426-34	16.4	104
580	Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. Significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10788-9	16.4	102
579	Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6532	7.1	101
578	Neutral Bimetallic Nickel(II) Phenoxyiminato Catalysts for Highly Branched Polyethylenes and Ethyleneâ®orbornene Copolymerizations. <i>Organometallics</i> , 2008 , 27, 2166-2168	3.8	101
577	Ultra-flexible, "invisible" thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. <i>Advanced Materials</i> , 2015 , 27, 2390-9	24	100
576	Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 1357-66	3.4	100
575	High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. <i>Advanced Materials</i> , 2010 , 22, 2333-7	24	99
574	Rapid, Mild, and Selective Ketone and Aldehyde Hydroboration/Reduction Mediated by a Simple Lanthanide Catalyst. <i>ACS Catalysis</i> , 2017 , 7, 1244-1247	13.1	98
573	Ligand steric and fluoroalkyl substituent effects on enchainment cooperativity and stability in bimetallic nickel(II) polymerization catalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 10715-32	4.8	98
572	Functionalized anthradithiophenes for organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1029		98
571	Rapid ether and alcohol C-O bond hydrogenolysis catalyzed by tandem high-valent metal triflate + supported Pd catalysts. <i>Journal of the American Chemical Society</i> , 2014 , 136, 104-7	16.4	97
57°	Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10066-E10073	11.5	97
569	A "zig-zag" naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. <i>Chemical Communications</i> , 2012 , 48, 8511-3	5.8	97

568	Solution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10239-50	16.4	95
567	Hybrid gate dielectric materials for unconventional electronic circuitry. <i>Accounts of Chemical Research</i> , 2014 , 47, 1019-28	24.3	94
566	UV-Ozone Interfacial Modification in Organic Transistors for High-Sensitivity NO Detection. <i>Advanced Materials</i> , 2017 , 29, 1701706	24	92
565	Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900265	15.6	92
564	Enhancing Indacenodithiophene Acceptor Crystallinity via Substituent Manipulation Increases Organic Solar Cell Efficiency. <i>Chemistry of Materials</i> , 2017 , 29, 10294-10298	9.6	92
563	All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. Journal of the American Chemical Society, 2010 , 132, 11934-42	16.4	92
562	Aziniumâ(ÆBridge)â P yrrole NLO-Phores: Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties#. <i>Chemistry of Materials</i> , 2002 , 14, 4996-5005	9.6	92
561	Conformationally tuned large two-photon absorption cross sections in simple molecular chromophores. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7287-91	16.4	92
560	Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15680-3	16.4	90
559	Organolanthanide-Catalyzed Imine Hydrogenation. Scope, Selectivity, Mechanistic Observations, and Unusual Byproducts. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3745-3755	16.4	90
558	Low-Temperature Atomic Layer Deposition of MoS Films. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4991-4995	16.4	89
557	Metal-Alkyl Group Effects on the Thermodynamic Stability and Stereochemical Mobility of B(C6F5)3-Derived Zr and Hf Metallocenium Ion-Pairs. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10358-10370	16.4	89
556	Covalently Linked Heterobimetallic Catalysts for Olefin Polymerization. <i>Organometallics</i> , 2004 , 23, 5112	2-35814	88
555	Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. <i>Joule</i> , 2020 , 4, 189	- 2.9 68	87
554	Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. <i>Nano Letters</i> , 2012 , 12, 6315-21	11.5	86
553	Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500427	6.4	85
552	Closely packed, low reorganization energy Extended postfullerene acceptors for efficient polymer solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8341-E8348	11.5	85
551	Catalyst Nuclearity Effects in Olefin Polymerization. Enhanced Activity and Comonomer Enchainment in Ethylene + Olefin Copolymerizations Mediated by Bimetallic Group 4 Phenoxyiminato Catalysts. <i>Macromolecules</i> , 2009 , 42, 1920-1933	5.5	85

(2002-2018)

550	Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. <i>Advanced Materials</i> , 2018 , 30, 1704263	24	85	
549	Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 2449-2460	9.6	84	
548	New low-dimensional molecular metals: single-crystal electrical conductivity of nickel phthalocyanine iodide. <i>Science</i> , 1978 , 200, 47-8	33.3	84	
547	New Organo-Lewis Acids. Tris(即erfluoronaphthyl)borane (PNB) as a Highly Active Cocatalyst for Metallocene-Mediated ZieglerâNatta むlefin Polymerization. <i>Organometallics</i> , 1998 , 17, 3996-4003	3.8	83	
546	Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. <i>Nano Letters</i> , 2013 , 13, 4810-4	11.5	82	
545	Coordination copolymerization of severely encumbered isoalkenes with ethylene: enhanced enchainment mediated by binuclear catalysts and cocatalysts. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14756-68	16.4	81	
544	Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6975-84	16.4	81	
543	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12565-79	16.4	80	
542	Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. <i>ACS Catalysis</i> , 2014 , 4, 999-1003	13.1	80	
541	Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation. <i>Journal of the American Chemical Society</i> , 1992 , 114, 10358-10368	16.4	80	
540	Very large cooperative effects in heterobimetallic titanium-chromium catalysts for ethylene polymerization/copolymerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10460-9	16.4	79	
539	Synthesis, characterization, and heterobimetallic cooperation in a titanium-chromium catalyst for highly branched polyethylenes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8830-3	16.4	79	
538	Organolanthanide-Catalyzed Hydroamination/Cyclization Reactions of Aminoalkynes. Computational Investigation of Mechanism, Lanthanide Identity, and Substituent Effects for a Very Exothermic CâN Bond-Forming Process. <i>Organometallics</i> , 2006 , 25, 5533-5539	3.8	79	
537	Polynuclear olefin polymerization catalysis: proximity and cocatalyst effects lead to significantly increased polyethylene molecular weight and comonomer enchainment levels. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4937-40	16.4	79	
536	Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. <i>Nano Letters</i> , 2015 , 15, 7029-36	11.5	78	
535	Phenylene-Bridged Binuclear Organolanthanide Complexes as Catalysts for Intramolecular and Intermolecular Hydroamination. <i>Organometallics</i> , 2009 , 28, 2423-2440	3.8	78	
534	Self-propagating molecular assemblies as interlayers for efficient inverted bulk-heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12528-30	16.4	77	
533	Polynuclear catalysis: enhancement of enchainment cooperativity between different single-site olefin polymerization catalysts by ion pairing with a binuclear cocatalyst. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13966-7	16.4	77	

532	Alkoxy-Functionalized Thienyl-Vinylene Polymers for Field-Effect Transistors and All-Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 2782-2793	15.6	76
531	Influence of Thiol Self-Assembled Monolayer Processing on Bottom-Contact Thin-Film Transistors Based on n-Type Organic Semiconductors. <i>Advanced Functional Materials</i> , 2012 , 22, 1856-1869	15.6	76
530	Lanthanide- and Actinide-Mediated Terminal Alkyne Hydrothiolation for the Catalytic Synthesis of Markovnikov Vinyl Sulfides. <i>Organometallics</i> , 2010 , 29, 6308-6320	3.8	75
529	Significant Proximity and Cocatalyst Effects in Binuclear Catalysis for Olefin Polymerization. <i>Macromolecules</i> , 2005 , 38, 9015-9027	5.5	75
528	Negative capacitance in organic light-emitting diodes. <i>Applied Physics Letters</i> , 2005 , 86, 073509	3.4	75
527	Thermochemically based strategies for carbon-hydrogen activation on saturated hydrocarbon molecules. Ring-opening reactions of a thoracyclobutane with tetramethylsilane and methane. <i>Journal of the American Chemical Society</i> , 1984 , 106, 2214-2216	16.4	75
526	Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS-Polymer Heterojunctions. <i>ACS Nano</i> , 2016 , 10, 10573-10579	16.7	74
525	Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16456-62	3.6	74
524	Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16632-16643	16.4	74
523	Flexible and stretchable metal bxide nanofiber networks for multimodal and monolithically integrated wearable electronics. <i>Nature Communications</i> , 2020 , 11, 2405	17.4	73
522	Versatile #Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2012 , 22, 48-60	15.6	71
521	Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 413-8	11.5	71
520	Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural and Optical Properties of Applied Materials & Distriction of the Structural and Optical Properties of Applied Materials & Distriction of the Structural and Optical Properties of Amorphous Zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural Applied Materials & Distriction of the Structural and Optical Properties of Amorphous Zinc-indium-tin oxide thin films. <i>ACS Applied Materials & Distriction of the Structural and Optical Properties of Amorphous Zinc-indium-tin oxide thin films. ACS Applied Materials & Distriction of the Structural and Distriction of Control of C</i></i></i>	9.5	71
519	Self-assembled electrooptic thin films with remarkably blue-shifted optical absorption based on an X-shaped chromophore. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15974-5	16.4	71
518	Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 3742-8	24	70
517	Substantial Recoverable Energy Storage in Percolative Metallic Aluminum-Polypropylene Nanocomposites. <i>Advanced Functional Materials</i> , 2013 , 23, 3560-3569	15.6	70
516	ZieglerâNatta catalyst activation. Thermodynamic and kinetic aspects of metallocenium ion-pair formation, dissociation, and structural reorganization. <i>Topics in Catalysis</i> , 1999 , 7, 97-106	2.3	70
515	Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Letters, 2015, 15, 416-21	11.5	68

5 ¹ 4	Synthesis and Catalytic Properties of Phenylene-Bridged Binuclear Organolanthanide Complexes. Organometallics, 2008 , 27, 155-158	3.8	68
513	Chiral, non-C2 symmetric zirconocene complexes as catalysts for stereoregular .alphaolefin polymerization. <i>Journal of the American Chemical Society</i> , 1993 , 115, 3326-3327	16.4	68
512	Conformationally-Induced Geometric Electron Localization. Interrupted Conjugation, Very Large Hyperpolarizabilities, and Sizable Infrared Absorption in Simple Twisted Molecular Chromophores. <i>Journal of the American Chemical Society</i> , 1997 , 119, 3155-3156	16.4	67
511	Silanolytic Chain Transfer in ZieglerâNatta Catalysis. Organotitanium-Mediated Formation of New Silapolyolefins and Polyolefin Architectures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4019-4	162 0	67
510	Mesoscopic features of charge generation in organic semiconductors. <i>Accounts of Chemical Research</i> , 2014 , 47, 3385-94	24.3	66
509	Mesoscale molecular network formation in amorphous organic materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10055-60	11.5	66
508	Ancillary Ligand Effects on Organo-f-Element Reactivity. ansa-Metallocenes with Bridge-Tethered Donors. <i>Organometallics</i> , 1997 , 16, 4705-4711	3.8	66
507	Energetics and Mechanism of Organolanthanide-Mediated Phosphinoalkene Hydrophosphination/Cyclization. A Density Functional Theory Analysis. <i>Organometallics</i> , 2005 , 24, 4995	- 3 003	66
506	Entwurf, Synthese und Eigenschaften von Moleklaggregaten mit ausgepräten nichtlinearen optischen Eigenschaften zweiter Ordnung. <i>Angewandte Chemie</i> , 1995 , 107, 167-187	3.6	65
505	Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 7983-8	9.5	64
504	Surface Organozirconium Electrophiles Activated by Chemisorption on åBuper Acidicål Julfated Zirconia as Hydrogenation and Polymerization Catalysts. A Synthetic, Structural, and Mechanistic Catalytic Study. <i>Organometallics</i> , 2002 , 21, 1788-1806	3.8	64
503	Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility. <i>ACS Applied Materials & Discrete Materials & Discrete</i>	9.5	63
502	Proximity and cooperativity effects in binuclear d(0) olefin polymerization catalysis. theoretical analysis of structure and reaction mechanism. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3974	. 1 644	63
501	Organolanthanide-catalyzed synthesis of phosphine-terminated polyethylenes. Scope and mechanism. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6311-24	16.4	63
500	Realization of Expeditious Layer-by-Layer Siloxane-Based Self-assembly as an Efficient Route to Structurally Regular Acentric Superlattices with Large Electro-optic Responses. <i>Chemistry of Materials</i> , 2002 , 14, 4982-4989	9.6	63
499	Strong ion pairing effects on single-site olefin polymerization: mechanistic insights in syndiospecific propylene enchainment. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11803-4	16.4	63
498	Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport. <i>Advanced Functional Materials</i> , 2016 , 26, 6179-6187	15.6	63
497	Rational design of ambipolar organic semiconductors: is core planarity central to ambipolarity in thiophene-naphthalene semiconductors?. <i>Chemistry - A European Journal</i> , 2012 , 18, 532-43	4.8	62

496	Reduced contact resistance in inkjet printed high-performance amorphous indium gallium zinc oxide transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 1614-9	9.5	62
495	Functionalized dithieno[2,3-b:3?,2?-d]thiophenes (DTTs) for organic thin-film transistors. <i>Organic Electronics</i> , 2010 , 11, 801-813	3.5	62
494	Diverse stereocontrol effects induced by weakly coordinating anions. Stereospecific olefin polymerization pathways at archetypal C(s)- and C(1)-symmetric metallocenium catalysts using mono- and polynuclear halo-perfluoroarylmetalates as cocatalysts. <i>Journal of the American Chemical Society</i> , 2007, 129, 12713-33	16.4	62
493	New Perfluoroarylborane Activators for Single-Site Olefin Polymerization. Acidity and Cocatalytic Properties of a âBuperacidicâlPerfluorodiboraanthracene. <i>Organometallics</i> , 2002 , 21, 4159-4168	3.8	62
492	Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes. <i>Advanced Materials</i> , 2014 , 26, 1098-104	24	61
491	Low-temperature solution-processed amorphous indium tin oxide field-effect transistors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10826-7	16.4	61
490	B(C6F5)3- vs Al(C6F5)3-derived metallocenium ion pairs. Structural, thermochemical, and structural dynamic divergences. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10898-909	16.4	61
489	MOCVD Routes to Thin Metal Oxide Films for superconducting electronics. <i>Advanced Materials</i> , 1994 , 6, 719-730	24	61
488	In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating. <i>Advanced Materials</i> , 2017 , 29, 1703933	24	60
487	Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes. <i>Langmuir</i> , 2001 , 17, 2051-205	54 ⁴	60
486	Calculation of quadratic hyperpolarizabilities for organic Lelectron chromophores: Molecular geometry sensitivity of second-order nonlinear optical response. <i>International Journal of Quantum Chemistry</i> , 1992 , 43, 61-82	2.1	60
485	Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst cidic oxide surface binding geometry. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6770-80	16.4	59
484	Simultaneous Bottom-Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small-Molecule Electrolytes. <i>Advanced Materials</i> , 2019 , 31, e1903239	24	59
483	Highly Dispersed SiO(x)/Al2O3 Catalysts Illuminate the Reactivity of Isolated Silanol Sites. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13346-51	16.4	59
482	Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8926-39	16.4	59
481	Electronically Monodisperse Single-Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2011 , 1, 785-791	21.8	59
480	Metallocene polymerization catalyst ion-pair aggregation by cryoscopy and pulsed field gradient spin-echo NMR diffusion measurements. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5256-7	16.4	59
479	Organolanthanide-Mediated Silanolytic Chain Transfer Processes. Scope and Mechanism of Single Reactor Catalytic Routes to Silapolyolefins. <i>Macromolecules</i> , 1999 , 32, 981-988	5.5	59

(2015-2017)

478	Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. <i>Chemistry of Materials</i> , 2017 , 29, 4432-4444	9.6	58	
477	Charge conduction and breakdown mechanisms in self-assembled nanodielectrics. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7158-68	16.4	58	
476	Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7528-9	16.4	58	
475	Silicon-Modified ZieglerâNatta Polymerization. Catalytic Approaches to Silyl-Capped and Silyl-Linked Polyolefins Using âBingle-SiteâlCationic ZieglerâNatta Catalysts. <i>Journal of the American Chemical Society</i> , 1999 , 121, 8791-8802	16.4	58	
474	Organometallic chemical vapor deposition of strontium titanate. <i>Journal of Applied Physics</i> , 1990 , 67, 3858-3861	2.5	58	
473	RATIONAL SYNTHESIS OF NEW UNIDIMENSIONAL SOLIDS: CHEMICAL AND PHYSICAL STUDIES OF MIXED-VALENCE POLYIODIDES*. <i>Annals of the New York Academy of Sciences</i> , 1978 , 313, 594-616	6.5	58	
472	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. <i>Applied Physics Letters</i> , 2017 , 110, 053101	3.4	57	
471	Delayed ignition of autocatalytic combustion precursors: low-temperature nanomaterial binder approach to electronically functional oxide films. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11583-93	16.4	57	
470	Quantitatively enhanced reliability and uniformity of high-l'dielectrics on graphene enabled by self-assembled seeding layers. <i>Nano Letters</i> , 2013 , 13, 1162-7	11.5	57	
469	Phenacyl-thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors. <i>Chemistry - A European Journal</i> , 2010 , 16, 1911-28	4.8	57	
468	Enantiomerically Pure Organolanthanides for Asymmetric Catalysis. Synthesis, Structures, and Catalytic Properties of Complexes Having Pseudo-meso-Me2Si(IB-C5H3R)(IB-C5H3R*) Ancillary Ligation. Organometallics, 1997, 16, 4486-4492	3.8	57	
467	Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: scope and mechanism of simultaneous polyolefin branch and functional group introduction. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2938-53	16.4	57	
466	Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements. <i>Applied Physics Letters</i> , 2008 , 92, 022104	3.4	56	
465	Nonlinear response properties of ultralarge hyperpolarizability twisted pi-system donor-acceptor chromophores. Dramatic environmental effects on response. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 44-50	3.4	55	
464	Organolanthanide-catalyzed synthesis of phosphine-terminated polyethylenes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12764-5	16.4	55	
463	Long-lived charge carrier generation in ordered films of a covalent perylenediimide-diketopyrrolopyrrole-perylenediimide molecule. <i>Chemical Science</i> , 2015 , 6, 402-411	9.4	54	
462	Significant ZirconiumâAlkyl Group Effects on Ion Pair Formation Thermodynamics and Structural Reorganization Dynamics in Zirconocenium Alkyls. <i>Organometallics</i> , 1999 , 18, 2410-2412	3.8	54	
461	Selective Ether/Ester CâD Cleavage of an Acetylated Lignin Model via Tandem Catalysis. <i>ACS Catalysis</i> , 2015 , 5, 7004-7007	13.1	53	

460	Reassessing the use of one-electron energetics in the design and characterization of organic photovoltaics. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4538-47	3.6	53
459	Ring-Opening Ziegler Polymerization of Methylenecycloalkanes Catalyzed by Highly Electrophilic d0/fn Metallocenes. Reactivity, Scope, Reaction Mechanism, and Routes to Functionalized Polyolefins. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7900-7913	16.4	53
458	Chemistry and Spectroscopy of f-Element Organometallics. Part 1: the Lanthanides. <i>Progress in Inorganic Chemistry</i> ,51-107		53
457	Low-Dimensional Arylacetylenes for Solution-Processable Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 2592-2594	9.6	52
456	New Mononuclear and Polynuclear Perfluoroarylmetalate Cocatalysts for Stereospecific Olefin Polymerization. <i>Organometallics</i> , 2004 , 23, 932-935	3.8	52
455	High-resolution solid-state (13)C NMR studies of chemisorbed organometallics. Chemisorptive formation of cation-like and alkylidene organotantalum complexes on high surface area inorganic oxides. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7103-10	16.4	52
454	Al-, Nb-, and Ta-Based Perfluoroaryloxide Anions as Cocatalysts for Metallocene-Mediated ZieglerâNatta Olefin Polymerization. <i>Organometallics</i> , 2000 , 19, 1625-1627	3.8	52
453	Metal and Ancillary Ligand Structural Effects on Ethylene Insertion Processes at Cationic Group 4 Centers. A Systematic, Comparative Quantum Chemical Investigation at Various ab Initio Levels. <i>Organometallics</i> , 2001 , 20, 4006-4017	3.8	52
452	Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics. <i>Advanced Materials</i> , 2016 , 28, 63-8	24	52
451	Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. Journal of the American Chemical Society, 2016 , 138, 7067-74	16.4	52
450	Stokes shift/emission efficiency trade-off in donorâlcceptor perylenemonoimides for luminescent solar concentrators. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8045-8054	13	51
449	What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. <i>Physical Review B</i> , 2013 , 88,	3.3	51
448	Organothorium-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Scope, Mechanism, and Ancillary Ligand Effects. <i>Organometallics</i> , 2013 , 32, 2517-2528	3.8	51
447	Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11080-90	16.4	51
446	Links between single-site heterogeneous and homogeneous catalysis. DFT analysis of pathways for organozirconium catalyst chemisorptive activation and olefin polymerization on gamma-alumina. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16533-46	16.4	51
445	Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All-Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1702173	21.8	50
444	Lanthanide-catalyst-mediated tandem double intramolecular hydroalkoxylation/cyclization of dialkynyl dialcohols: scope and mechanism. <i>Chemistry - A European Journal</i> , 2010 , 16, 5148-62	4.8	50
443	Diversity in Weakly Coordinating Anions. Mono- and Polynuclear Halo(perfluoroaryl)metalates as Cocatalysts for Stereospecific Olefin Polymerization: Synthesis, Structure, and Reactivity. Organometallics 2006, 25, 2833-2850	3.8	50

(2020-2014)

442	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6376	7.1	49	
441	Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4459-4472		49	
440	Organolanthanide-catalyzed synthesis of amine-capped polyethylenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10102-3	16.4	49	
439	Supported Organometallics. Highly Electrophilic Cationic Metallocene Hydrogenation and Polymerization Catalysts Formed via Protonolytic Chemisorption on Sulfated Zirconia. <i>Journal of the American Chemical Society</i> , 1998 , 120, 13533-13534	16.4	49	
438	Bithiophenesulfonamide Building Block for EConjugated Donor-Acceptor Semiconductors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6944-7	16.4	49	
437	Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b']dithiophene (bBDT) molecular donors. <i>Chemical Communications</i> , 2014 , 50, 4099-101	5.8	48	
436	1âElnoise of SnO2 nanowire transistors. <i>Applied Physics Letters</i> , 2008 , 92, 243120	3.4	48	
435	Realization of high-efficiency/high-luminance small-molecule organic light-emitting diodes: synergistic effects of siloxane anode functionalization/hole-injection layers, and hole/exciton-blocking/electron-transport layers. <i>Applied Physics Letters</i> , 2003 , 82, 331-333	3.4	48	
434	Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis. <i>Accounts of Chemical Research</i> , 2016 , 49, 824-34	24.3	48	
433	Scandium-Catalyzed Self-Assisted Polar Co-monomer Enchainment in Ethylene Polymerization. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15964-15968	16.4	47	
432	Cooperative coupling of cyanine and tictoid twisted Bystems to amplify organic chromophore cubic nonlinearities. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4622-5	16.4	47	
431	Ultra-High-Response, Multiply Twisted Electro-optic Chromophores: Influence of Esystem Elongation and Interplanar Torsion on Hyperpolarizability. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12521-38	16.4	47	
430	Sulfated Tin Oxide Nanoparticles as Supports for Molecule-Based Olefin Polymerization Catalysts. <i>Nano Letters</i> , 2004 , 4, 1557-1559	11.5	47	
429	New Semiconductors Based on 2,2?-Ethyne-1,2-diylbis[3-(alk-1-yn-1-yl)thiophene] for Organic Opto-Electronics. <i>Chemistry of Materials</i> , 2012 , 24, 2929-2942	9.6	46	
428	Twisted Bystem electro-optic chromophores. A CIS vs. MRD-CI theoretical investigation. <i>Computational and Theoretical Chemistry</i> , 2003 , 633, 227-235		46	
427	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12310-12321	13	45	
426	Influence of Anion Delocalization on Electron Transfer in a Covalent Porphyrin Donor-Perylenediimide Dimer Acceptor System. <i>Journal of the American Chemical Society</i> , 2017 , 139, 749-756	16.4	45	
425	Fluorinating Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000635	21.8	45	

424	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. <i>Chemistry of Materials</i> , 2016 , 28, 8366-8378	9.6	45
423	High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 17428-34	9.5	45
422	Singlet Fission within Diketopyrrolopyrrole Nanoparticles in Water. <i>Chemistry of Materials</i> , 2017 , 29, 6810-6817	9.6	45
421	Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. <i>Applied Physics Letters</i> , 2008 , 93, 083306	3.4	44
420	Self-Assembled Electrooptic Superlattices. A Theoretical Study of Multilayer Formation and Response Using DonorâAcceptor, Hydrogen-Bond Building Blocks. <i>Chemistry of Materials</i> , 2004 , 16, 184	8 ² f854	144
419	Nonlinear optical properties of textured strontium barium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 66, 1726-1728	3.4	44
418	Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d(0) Organozirconium Catalyst. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5263-7	16.4	44
417	Highly branched polyethylene oligomers via group IV-catalysed polymerization in very nonpolar media. <i>Nature Catalysis</i> , 2019 , 2, 236-242	36.5	44
416	Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8932-8941	7.1	43
415	Room Temperature Phase Transition in Methylammonium Lead Iodide Perovskite Thin Films Induced by Hydrohalic Acid Additives. <i>ChemSusChem</i> , 2016 , 9, 2656-2665	8.3	43
414	A Twist on Nonlinear Optics: Understanding the Unique Response of Twisted Chromophores. <i>Accounts of Chemical Research</i> , 2019 , 52, 1428-1438	24.3	42
413	Modeling geminate pair dissociation in organic solar cells: high power conversion efficiencies achieved with moderate optical bandgaps. <i>Energy and Environmental Science</i> , 2012 , 5, 8343	35.4	42
412	Atomic Resolution X-ray Standing Wave Microstructural Characterization of NLO-Active Self-Assembled Chromophoric Superlattices. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2205-	2214	42
411	Weakly Coordinating Al-, Nb-, Ta-, Y-, and La-Based Perfluoroaryloxymetalate Anions as Cocatalyst Components for Single-Site Olefin Polymerization. <i>Organometallics</i> , 2002 , 21, 3691-3702	3.8	42
410	Bis(Pentafluorophenyl)(2-perfluorobiphenylyl)borane. A New Perfluoroarylborane Cocatalyst for Single-Site Olefin Polymerization. <i>Organometallics</i> , 2000 , 19, 3332-3337	3.8	42
409	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent Sulfur Dxygen Interactions. <i>Macromolecules</i> , 2018 , 51, 3874-3885	5.5	41
408	Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 8739-8750	13.1	41
407	Optical Properties and Modeling of 2D Perovskite Solar Cells. <i>Solar Rrl</i> , 2017 , 1, 1700062	7.1	41

(2006-2011)

406	Molecular-shape-controlled photovoltaic performance probed via soluble Econjugated arylacetylenic semiconductors. <i>Advanced Materials</i> , 2011 , 23, 3827-31	24	41
405	Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition. <i>Journal of Materials Research</i> , 1997 , 12, 1214-1236	2.5	41
404	Efficient synthesis and structural characteristics of zwitterionic twisted pi-electron system biaryls. <i>Organic Letters</i> , 2005 , 7, 3721-4	6.2	41
403	A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells. <i>Macromolecules</i> , 2015 , 48, 5148-5154	5.5	40
402	Structural and Conformational Dispersion in the Rational Design of Conjugated Polymers. <i>Macromolecules</i> , 2014 , 47, 987-992	5.5	40
401	Small molecule organic light-emitting diodes can exhibit high performance without conventional hole transport layers. <i>Applied Physics Letters</i> , 2002 , 81, 3528-3530	3.4	40
400	Ultrahigh-Temperature Polymers for Second-Order Nonlinear Optics. Synthesis and Properties of Robust, Processable, Chromophore-Embedded Polyimides. <i>Chemistry of Materials</i> , 2000 , 12, 1679-1693	9.6	40
399	Early Transition Metal Catalysis for Olefin-Polar Monomer Copolymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14726-14735	16.4	39
398	Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7456-60	16.4	39
397	Hydrolytic cleavage of both CS carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature. <i>Nature Chemistry</i> , 2017 , 9, 188-193	17.6	39
396	Specular x-ray reflectivity study of ordering in self-assembled organic and hybrid organicalihorganic electro-optic multilayer films. <i>Journal of Chemical Physics</i> , 2001 , 115, 6722-6727	3.9	39
395	La[N(SiMe3)2]3-Catalyzed Ester Reductions with Pinacolborane: Scope and Mechanism of Ester Cleavage. <i>ACS Catalysis</i> , 2019 , 9, 9015-9024	13.1	38
394	Electronic Coupling in Metallophthalocyanine-Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. <i>ACS Nano</i> , 2019 , 13, 4183-4190	16.7	38
393	High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes. <i>Science Advances</i> , 2018 , 4, eaap9104	14.3	38
392	Buta-1,3-diyne-Based ©Conjugated Polymers for Organic Transistors and Solar Cells. <i>Macromolecules</i> , 2017 , 50, 1430-1441	5.5	37
391	Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7897-902	11.5	37
390	La[N(SiMe)]-Catalyzed Deoxygenative Reduction of Amides with Pinacolborane. Scope and Mechanism. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8019-8028	16.4	37
389	Recyclable Polymer-Supported Organolanthanide Hydroamination Catalysts. Immobilization and Activation via Dynamic Transamination. <i>Organometallics</i> , 2006 , 25, 4763-4772	3.8	37

388	Microstructure of epitaxial potassium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1996 , 68, 761-763	3.4	37
387	Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. <i>Chemistry of Materials</i> , 2016 , 28, 3928-3936	9.6	37
386	Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. <i>ACS Catalysis</i> , 2016 , 6, 6762-6769	13.1	36
385	Reaction Pathways and Energetics of Etheric Câ® Bond Cleavage Catalyzed by Lanthanide Triflates. <i>ACS Catalysis</i> , 2013 , 3, 1908-1914	13.1	36
384	Synthesis, Characterization, and Heterogeneous Catalytic Implementation of Sulfated Alumina Nanoparticles. Arene Hydrogenation and Olefin Polymerization Properties of Supported Organozirconium Complexes. <i>ACS Catalysis</i> , 2011 , 1, 238-245	13.1	36
383	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. <i>Chemistry of Materials</i> , 2011 , 23, 2185-2200	9.6	36
382	High-Performance Thin-Film Transistors from Solution-Processed Cadmium Selenide and a Self-Assembled Multilayer Gate Dielectric. <i>Advanced Materials</i> , 2008 , 20, 2319-2324	24	36
381	Zirconium hydrocarbyl chemisorption on sulfated metal oxides: new supports, chemisorption pathways, and implications for catalysis. <i>Langmuir</i> , 2004 , 20, 9456-62	4	36
380	Recent developments in the surface and catalytic chemistry of supported organoactinides. <i>Journal of Molecular Catalysis</i> , 1994 , 86, 23-50		36
379	Strategies for Control of Lattice Architecture in Low-Dimensional Molecular Metals: Assembly of Partially Oxidized Face-to-Face Linked Arrays of Metallomacrocycles. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1981 , 16, 275-298		36
378	Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structureâ Tribology Relationships. <i>Tribology Letters</i> , 2012 , 48, 355	2.8	35
377	Ethylene Polymerization Characteristics of an Electron-Deficient Nickel(II) Phenoxyiminato Catalyst Modulated by Non-Innocent Intramolecular Hydrogen Bondingâ Organometallics, 2010, 29, 5040-5049	3.8	35
376	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. <i>Physical Review Letters</i> , 2018 , 121, 127401	7.4	35
375	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having Extended Units with Broad Near-IR Absorption. <i>ACS Energy Letters</i> , 2021 , 6, 728-738	20.1	35
374	Star-shaped hole transport materials with indeno[1,2-b] thiophene or fluorene on a triazine core for efficient perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1186-1190	13	34
373	High performance In2O3 nanowire transistors using organic gate nanodielectrics. <i>Applied Physics Letters</i> , 2008 , 92, 222105	3.4	34
372	Epitaxial potassium niobate thin films prepared by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 67, 365-367	3.4	34
371	Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19857-19861	16.4	34

370	Systematic Merging of Nonfullerene Acceptor Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6123-613	39 ^{16.4}	34	
369	In Situ Analysis of Solvent and Additive Effects on Film Morphology Evolution in Spin-Cast Small-Molecule and Polymer Photovoltaic Materials. <i>Advanced Energy Materials</i> , 2018 , 8, 1800611	21.8	34	
368	Breath figure-derived porous semiconducting films for organic electronics. <i>Science Advances</i> , 2020 , 6, eaaz1042	14.3	33	
367	Volatile Hexavalent Oxo-amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2016 , 28, 1907-1919	9.6	33	
366	Diperfluorophenyl Fused Thiophene Semiconductors for n-Type Organic Thin Film Transistors (OTFTs). <i>Advanced Electronic Materials</i> , 2015 , 1, 1500098	6.4	33	
365	Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials. Journal of the American Chemical Society, 2015 , 137, 7189-96	16.4	33	
364	A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes. <i>Applied Physics Letters</i> , 2004 , 84, 3873-3875	3.4	33	
363	Alkyl-Cyclens as Effective Sulfur- and Phosphorus-Free Friction Modifiers for Boundary Lubrication. <i>ACS Applied Materials & Acs Applied Materials & Description</i> (1988) 118-9125	9.5	32	
362	High-Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement. <i>Advanced Energy Materials</i> , 2014 , 4, 1301938	21.8	32	
361	Chain Length Dependence of the Dielectric Constant and Polarizability in Conjugated Organic Thin Films. <i>ACS Nano</i> , 2017 , 11, 5970-5981	16.7	32	
360	Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1959	7.1	32	
359	Twisted Electron System Electrooptic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Nonbonded Repulsions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8005-8015	3.8	32	
358	Molecular-Orientation-Dependent Interfacial Charge Transfer in Phthalocyanine/MoS2 Mixed-Dimensional Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13337-13343	3.8	31	
357	Pyridylamido Bi-Hafnium Olefin Polymerization Catalysis: Conformationally Supported HfIIIHf Enchainment Cooperativity. <i>ACS Catalysis</i> , 2015 , 5, 5272-5282	13.1	31	
356	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. <i>ACS Energy Letters</i> , 2020 , 5, 1780-1787	20.1	31	
355	Cation Size Effects on the Electronic and Structural Properties of Solution-Processed InâXâD Thin Films. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500146	6.4	31	
354	"Supersaturated" self-assembled charge-selective interfacial layers for organic solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17762-73	16.4	31	
353	Ancillary Ligand Effects in Chiral C1-Symmetric ansa-Metallocene Catalysts for Stereoregular EOlefin Polymerization. âlWingspanâlModification with Octahydrofluorene. <i>Organometallics</i> , 1997 , 16, 2503-2505	3.8	31	

352	Stereochemical control mechanisms in propylene polymerization mediated by C1-symmetric CGC titanium catalyst centers. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7327-38	16.4	31
351	Adsorption of Polar Molecules on a Molecular Surface. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 2881-7	2 <u>8</u> 84	31
350	Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors. <i>Advanced Materials</i> , 2019 , 31, e1805082	24	31
349	Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers. Journal of the American Chemical Society, 2017 , 139, 14356-14359	16.4	30
348	Materials science: Semiconductors grown large and thin. <i>Nature</i> , 2015 , 520, 631-2	50.4	30
347	Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13410-13420	16.4	30
346	Molecular and electronic-structure basis of the ambipolar behavior of naphthalimide-terthiophene derivatives: implementation in organic field-effect transistors. <i>Chemistry - A European Journal</i> , 2013 , 19, 12458-67	4.8	30
345	Fused Thiophene Semiconductors: Crystal Structureâ Eilm Microstructure Transistor Performance Correlations. <i>Advanced Functional Materials</i> , 2013 , 23, 3850-3865	15.6	30
344	Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 1690-1697	20.1	30
343	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5. <i>Chemical Science</i> , 2015 , 6, 4860-4866	9.4	30
342	Weibull Analysis of Dielectric Breakdown in a Self-Assembled Nanodielectric for Organic Transistors. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3292-3297	6.4	30
341	Chemisorption Pathways and Catalytic Olefin Polymerization Properties of Group 4 Mono- and Binuclear Constrained Geometry Complexes on Highly Acidic Sulfated Alumina. <i>Organometallics</i> , 2009 , 28, 2053-2061	3.8	30
340	MOCVD of Epitaxial BaTiO3 Films Using a Liquid Barium Precursor. <i>Chemical Vapor Deposition</i> , 2000 , 6, 175-177		30
339	Suppressing Defect Formation Pathways in the Direct CâH Arylation Polymerization of Photovoltaic Copolymers. <i>Macromolecules</i> , 2018 , 51, 9140-9155	5.5	30
338	Building Blocks for High-Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Post-Fullerene ITIC Ensembles. <i>ChemPhysChem</i> , 2019 , 20, 2608-2626	3.2	29
337	Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5457-5473	16.4	29
336	Solution-Processed Carbon Nanotube True Random Number Generator. <i>Nano Letters</i> , 2017 , 17, 4976-49	81 .5	29
335	Hydrothermal synthesis of LnMnO3 (Ln = Hoâllu and Y): exploiting amphoterism in late rare-earth oxides. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4375		29

(2009-2001)

334	Design and Preparation of Zwitterionic Organic Thin Films: Self-Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials. <i>Langmuir</i> , 2001 , 17, 5939-5942	4	29
333	Benzo[d][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. <i>Chemistry of Materials</i> , 2016 , 28, 6390-6400	9.6	29
332	Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12501-12510	16.4	29
331	Stabilizing Single-Atom and Small-Domain Platinum via Combining Organometallic Chemisorption and Atomic Layer Deposition. <i>Organometallics</i> , 2017 , 36, 818-828	3.8	28
330	Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1905393	15.6	28
329	Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indiumâ©alliumâ©inc Oxide Transistors. <i>Chemistry of Materials</i> , 2018 , 30, 3323-3329	9.6	28
328	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. <i>Nano Energy</i> , 2019 , 64, 103936	17.1	28
327	Universal statistics of parasitic shunt formation in solar cells, and its implications for cell to module efficiency gap. <i>Energy and Environmental Science</i> , 2013 , 6, 782	35.4	28
326	Incisive structure-spectroscopic correlation in oligothiophenes functionalized with (+/-) inductive/mesomeric fluorine groups: joint Raman and DFT study. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13364-72	16.4	28
325	Alkynyl-Functionalized Head-to-Head Linkage Containing Bithiophene as a Weak Donor Unit for High-Performance Polymer Semiconductors. <i>Chemistry of Materials</i> , 2017 , 29, 4109-4121	9.6	27
324	Epitaxial Growth of ECyclodextrin-Containing Metal-Organic Frameworks Based on a Host-Guest Strategy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11402-11407	16.4	27
323	Specular x-ray reflectivity studies of microstructure and ordering in self-assembled multilayers. <i>Journal of Chemical Physics</i> , 1997 , 107, 645-652	3.9	27
322	18. Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III). Inorganic Syntheses, 2007, 84-86		27
321	Epitaxial growth of SrTiO3 thin films by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1995 , 66, 3298-3300	3.4	27
320	Systematic evaluation of structureaproperty relationships in heteroacene aldiketopyrrolopyrrole molecular donors for organic solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9217-9232	13	26
319	Ternary Polymerâ P erylenediimideâ¶arbon Nanotube Photovoltaics with High Efficiency and Stability under Super-Solar Irradiation. <i>ACS Energy Letters</i> , 2016 , 1, 548-555	20.1	26
318	Charge-trap flash-memory oxide transistors enabled by copper-zirconia composites. <i>Advanced Materials</i> , 2014 , 26, 7170-7	24	26
317	Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. <i>Applied Physics Letters</i> , 2009 , 95, 183504	3.4	26

316	Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices. <i>Applied Physics Letters</i> , 2001 , 79, 587-589	3.4	26
315	Kationische Metallocen-Polymerisationskatalysatoren: Das erste basenfreie Zirconocenhydrid. <i>Angewandte Chemie</i> , 1992 , 104, 1406-1408	3.6	26
314	Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 9230-9238	11.5	25
313	Significant Polar Comonomer Enchainment in Zirconium-Catalyzed, Masking Reagent-Free, Ethylene Copolymerizations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7030-7034	16.4	25
312	Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism. <i>Energy and Environmental Science</i> , 2016 , 9, 550-564	35.4	25
311	Thermal Conductivity Comparison of Indium Gallium Zinc Oxide Thin Films: Dependence on Temperature, Crystallinity, and Porosity. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 7467-7475	3.8	25
310	Spatially-resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy. <i>Applied Physics Letters</i> , 2004 , 85, 344-346	3.4	25
309	Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium-indium-oxide thin films. <i>Journal of Materials Research</i> , 2002 , 17, 3155-3162	2.5	25
308	Poly(1,4:2,2-butanetetrayl). A Novel Polyspirane via Metallocenium-Catalyzed Ring-Openingâlipping-Up Polymerization of Methylenecyclopropane. <i>Journal of the American Chemical Society</i> , 1996 , 118, 1547-1548	16.4	25
307	Light and complex 3D MoS/graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. <i>Nanoscale</i> , 2020 , 12, 2715-2725	7.7	25
306	Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. <i>EnergyChem</i> , 2020 , 2, 100042	36.9	25
305	Mobility versus Alignment of a Semiconducting Extended Discotic Liquid-Crystalline Triindole. <i>ACS Applied Materials & Discotic Liquid-Crystalline Triindole.</i>	9.5	25
304	Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes. <i>ACS Nano</i> , 2017 , 11, 2992-3000	16.7	24
303	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5351-5361	13	24
302	Stable Postfullerene Solar Cells via Direct CâH Arylation Polymerization. MorphologyâPerformance Relationships. <i>Chemistry of Materials</i> , 2019 , 31, 4313-4321	9.6	24
301	Unprecedented Large Hyperpolarizability of Twisted Chromophores in Polar Media. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8746-8755	16.4	24
300	Highly Volatile, Low Melting, Fluorine-Free Precursors for Metal-Organic Chemical Vapor Deposition of Lanthanide Oxide-Containing Thin Films. <i>Chemical Vapor Deposition</i> , 1999 , 5, 65-69		24
299	Polymersolarzellen: Fortschritt, Herausforderungen und Perspektiven. <i>Angewandte Chemie</i> , 2019 , 131, 4173-4186	3.6	24

298	Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane -> Ethylene Coupling. Scope and Mechanistic Observations. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15234-40	16.4	23	
297	Silanolytic Chain Transfer in Olefin Polymerization with Supported Single-Site ZieglerâNatta Catalysts. <i>Macromolecules</i> , 2001 , 34, 4676-4679	5.5	23	
296	Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. <i>Advanced Materials</i> , 2021 , 33, e2007041	24	23	
295	Correlated In Situ Low-Frequency Noise and Impedance Spectroscopy Reveal Recombination Dynamics in Organic Solar Cells Using Fullerene and Non-Fullerene Acceptors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703805	15.6	22	
294	Excitation Energy Transfer within Covalent Tetrahedral Perylenediimide Tetramers and Their Intermolecular Aggregates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16941-16950	3.8	22	
293	Harnessing Quantum Interference in Molecular Dielectric Materials. <i>ACS Nano</i> , 2015 , 9, 6412-8	16.7	22	
292	Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. <i>Applied Physics Letters</i> , 2014 , 104, 083503	3.4	22	
291	Metal and Ancillary Coordination Effects on Organolanthanideâlligand Bond Enthalpies. <i>ACS Symposium Series</i> , 1990 , 159-174	0.4	22	
290	CsSnI-Encapsulated Multidye-Sensitized All-Solid-State Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 21424-21434	9.5	21	
289	Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structureâ P roperty Relationships. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700189	6.4	21	
288	Metal and Counteranion Nuclearity Effects in Organoscandium-Catalyzed Isoprene Polymerization and Copolymerization. <i>ACS Catalysis</i> , 2017 , 7, 5214-5219	13.1	21	
287	Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500226	6.4	21	
286	Atom-Efficient CarbonâDxygen Bond Formation Processes. DFT Analysis of the Intramolecular Hydroalkoxylation/Cyclization of Alkynyl Alcohols Mediated by Lanthanide Catalysts. Organometallics, 2010, 29, 2004-2012	3.8	21	
285	Polydentate Amines as CVD Precursor Ancillary Ligands. Epitaxial MgO Thin-Film Growth Using a Highly Volatile, Thermally and Air-Stable Magnesium Precursor. <i>Chemical Vapor Deposition</i> , 2000 , 6, 180	0-183	21	
284	Electronic Structure, Molecular Geometry, and Bonding Energetics in Zerovalent Yttrium and Gadolinium Bis(arene) Sandwich Complexes. A Theoretical ab Initio Studyâ <i>Organometallics</i> , 1996 , 15, 3985-3989	3.8	21	
283	Maximizing the dielectric response of molecular thin films via quantum chemical design. <i>ACS Nano</i> , 2014 , 8, 12587-600	16.7	20	
282	Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis. <i>Applied Physics Letters</i> , 2013 , 102, 193111	3.4	20	
281	First-principles calculation of dielectric response in molecule-based materials. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9753-9	16.4	20	

280	d0/fn-Mediated Ring-Opening Ziegler Polymerization (ROZP) and Copolymerization with Mono-and Disubstituted Methylenecyclopropanes. Diverse Mechanisms and a New Chain-Capping Termination Process. <i>Organometallics</i> , 2004 , 23, 740-754	3.8	20
279	Enforced Segregated Stacking in Metallomacrocyclic âMETALS.âlNew Information on Phthalocyanine Donor-Acceptor Interactions. <i>Molecular Crystals and Liquid Crystals</i> , 1983 , 93, 355-367		20
278	Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2. <i>Chemistry of Materials</i> , 2018 , 30, 3628-3632	9.6	20
277	Chlorotris(I)Cyclopentadienyl)Complexes of Uranium(IV) and Thorium(IV). <i>Inorganic Syntheses</i> ,147-151		20
276	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> , 11, 14166-14174	9.5	19
275	Mechanism of Organoscandium-Catalyzed Ethylene Copolymerization with Amino-Olefins: A Quantum Chemical Analysis. <i>ACS Catalysis</i> , 2019 , 9, 8810-8818	13.1	19
274	Scandium-Catalyzed Self-Assisted Polar Co-monomer Enchainment in Ethylene Polymerization. <i>Angewandte Chemie</i> , 2017 , 129, 16180-16184	3.6	19
273	Structure of organometallic chemical vapor deposited BaTiO3 thin films on LaAIO3. <i>Journal of Electronic Materials</i> , 1993 , 22, 701-703	1.9	19
272	Novel unsymmetrical squaraine-based small molecules for organic solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 847-854	7.1	18
271	Catalyst Nuclearity Effects on Stereo- and Regioinduction in Pyridylamidohafnium-Catalyzed Propylene and 1-Octene Polymerizations. <i>Macromolecules</i> , 2018 , 51, 2401-2410	5.5	18
270	Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics. <i>Accounts of Chemical Research</i> , 2016 , 49, 1614-23	24.3	18
269	Carbostannolysis Mediated by Bis(pentamethylcyclopentadienyl)lanthanide Catalysts. Utility in Accessing Organotin Synthons. <i>Organometallics</i> , 2013 , 32, 1317-1327	3.8	18
268	Dithienylbenzodiimide: a new electron-deficient unit for n-type polymer semiconductors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9559-9569	7.1	18
267	Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)Oâ R ? Bond Hydrogenolysis. Scope and Mechanism. <i>ACS Catalysis</i> , 2015 , 5, 3675-3679	13.1	18
266	Comparative passivation effects of self-assembled mono- and multilayers on GaAs junction field effect transistors. <i>Applied Physics Letters</i> , 2008 , 92, 123509	3.4	18
265	Copper(I) tert-Butylthiolato Clusters as Single-Source Precursors for High-Quality Chalcocite Thin Films: Precursor Chemistry in Solution and the Solid State. <i>Chemistry of Materials</i> , 2007 , 19, 2768-2779	9.6	18
264	41. 1,2,3,4,5-Pentamethylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 181-185		18
263	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10502-10515	16.4	18

(2020-2017)

262	Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600610	4.8	17
261	Enhanced Uniformity and Area Scaling in Carbon Nanotubeâ E ullerene Bulk-Heterojunction Solar Cells Enabled by Solvent Additives. <i>Advanced Energy Materials</i> , 2016 , 6, 1501466	21.8	17
260	Distinctive Stereochemically Linked Cooperative Effects in Bimetallic Titanium Olefin Polymerization Catalysts. <i>Organometallics</i> , 2017 , 36, 4403-4421	3.8	17
259	Reinforced self-assembled nanodielectrics for high-performance transparent thin film transistors. <i>Advanced Materials</i> , 2011 , 23, 992-7	24	17
258	Organo-fn,d0-Mediated Synthesis of Amine-Capped Polyethylenes. Scope and Mechanism. <i>Organometallics</i> , 2008 , 27, 2411-2420	3.8	17
257	Effect of Alkyl Chain Branching Point on 3D Crystallinity in High N-Type Mobility Indolonaphthyridine Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1704069	15.6	16
256	Ligand-Unsymmetrical Phenoxyiminato Dinickel Catalyst for High Molecular Weight Long-Chain Branched Polyethylenes. <i>ACS Macro Letters</i> , 2015 , 4, 1297-1301	6.6	16
255	Oil-Soluble Silver-Organic Molecule for in Situ Deposition of Lubricious Metallic Silver at High Temperatures. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	16
254	Silver-Organic Oil Additive for High-Temperature Applications. <i>Tribology Letters</i> , 2013 , 52, 261-269	2.8	16
253	Simple Analytic Description of Collection Efficiency in Organic Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 704-9	6.4	16
252	Pushâ P ull Electron Phosphonic-Acid-Based Self-Assembled Multilayer Nanodielectrics Fabricated in Ambient for Organic Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 1173-1175	9.6	16
251	Liquid source metalâBrganic chemical-vapor deposition of high-quality YBa2Cu3O7â⊠ films on polycrystalline silver substrates. <i>Applied Physics Letters</i> , 1998 , 72, 1253-1255	3.4	16
250	Extended Naphthalene Diimide Derivatives for n-Type Semiconducting Polymers. <i>Chemistry of Materials</i> , 2020 , 32, 5317-5326	9.6	16
249	Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 18231-18239	11.5	16
248	Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d0 Organozirconium Catalyst. <i>Angewandte Chemie</i> , 2016 , 128, 5349-5353	3.6	16
247	Homoleptic Lanthanide Amide Catalysts for Organic Synthesis: Experiment and Theory. <i>ACS Catalysis</i> , 2021 , 11, 2715-2734	13.1	16
246	Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from aqueous alcohol solutions. <i>Energy and Environmental Science</i> , 2017 , 10, 1558-1562	35.4	15
245	Engineering Intrinsic Flexibility in Polycrystalline Molecular Semiconductor Films by Grain Boundary Plasticization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5487-5492	16.4	15

244	Cationic Pyridylamido Adsorbate on Brfisted Acidic Sulfated Zirconia: A Molecular Supported Organohafnium Catalyst for Olefin Homo- and Co-Polymerization. <i>ACS Catalysis</i> , 2018 , 8, 4893-4901	13.1	15
243	Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO2 via Surface Organometallic Chemistry. <i>ACS Catalysis</i> , 2016 , 6, 8380-8388	13.1	15
242	Enhanced Fill Factor through Chalcogen Side-Chain Manipulation in Small-Molecule Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 2415-2421	20.1	15
241	The Dipole Moment Inversion Effects in Self-Assembled Nanodielectrics for Organic Transistors. <i>Chemistry of Materials</i> , 2017 , 29, 9974-9980	9.6	15
240	Sustainable synthetic approach to Etonjugated arylacetylenic semiconductors for bulk heterojunction solar cells. <i>RSC Advances</i> , 2013 , 3, 9288	3.7	15
239	Low temperature deposition of epitaxial BaTiO3 films in a rotating disk vertical MOCVD reactor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1674		15
238	Epitaxial Niobate Thin Films and Their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 211		15
237	Charge Separation Mechanisms in Ordered Films of Self-Assembled Donor-Acceptor Dyad Ribbons. <i>ACS Applied Materials & Donor-Acceptor Dyad Ribbons</i> . 33493-33503	9.5	14
236	Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12440-12452	16.4	14
235	Annulated Thienyl-Vinylene-Thienyl Building Blocks for EConjugated Copolymers: Ring Dimensions and Isomeric Structure Effects on EConjugation Length and Charge Transport. <i>Chemistry of Materials</i> , 2016 , 28, 5772-5783	9.6	14
234	Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 7608-7617	9.6	14
233	Functionalized benzothieno[3,2 b]thiophenes (BTTs) for high performance organic thin-film transistors (OTFTs). <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7599	7.1	14
232	Expedient route to volatile zirconium metal-organic chemical vapor deposition precursors using amide synthons and implementation in yttria-stabilized zirconia film growth. <i>Journal of Materials Research</i> , 1999 , 14, 12-15	2.5	14
231	Film microstructure-deposition condition relationships in the growth of epitaxial NiO films by metalorganic chemical vapor deposition on oxide and metal substrates. <i>Journal of Materials Research</i> , 1999 , 14, 1132-1136	2.5	14
230	Significant Polar Comonomer Enchainment in Zirconium-Catalyzed, Masking Reagent-Free, Ethylene Copolymerizations. <i>Angewandte Chemie</i> , 2019 , 131, 7104-7108	3.6	13
229	Ultrahigh Vacuum Self-Assembly of Rotationally Commensurate C8-BTBT/MoS2/Graphene Mixed-Dimensional Heterostructures. <i>Chemistry of Materials</i> , 2019 , 31, 1761-1766	9.6	13
228	Early Transition Metal Catalysis for Olefinâ P olar Monomer Copolymerization. <i>Angewandte Chemie</i> , 2020 , 132, 14834-14843	3.6	13
227	Synthesis of Supported Pd0 Nanoparticles from a Single-Site Pd2+ Surface Complex by Alkene Reduction. <i>Chemistry of Materials</i> , 2018 , 30, 1032-1044	9.6	13

226	Electronic Structure and Potential Reactivity of Silaaromatic Molecules. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 9476-9488	2.8	13
225	Tunable Radiation Response in Hybrid Organic-Inorganic Gate Dielectrics for Low-Voltage Graphene Electronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 5058-64	9.5	13
224	Indacenodithiazole-Ladder-Type Bridged Di(thiophene)-Difluoro-Benzothiadiazole-Conjugated Copolymers as Ambipolar Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 9488-9496	9.6	13
223	Organosilane Effects on Organotitanium-Catalyzed Styrene Polymerization. <i>Organometallics</i> , 2007 , 26, 2960-2963	3.8	13
222	Performance, Morphology, and Charge Recombination Correlations in Ternary Squaraine Solar Cells. <i>Chemistry of Materials</i> , 2018 , 30, 6810-6820	9.6	13
221	Low-Temperature Atomic Layer Deposition of MoS2 Films. <i>Angewandte Chemie</i> , 2017 , 129, 5073-5077	3.6	12
220	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. <i>Chemistry of Materials</i> , 2017 , 29, 4008-4013	9.6	12
219	Unexpected Precatalyst Ligand Effects in Phenoxyimine Zr-Catalyzed Ethylene/1-Octene Copolymerizations. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7822-7830	16.4	12
218	Processing, Structure, and Transistor Performance: Combustion versus Pulsed Laser Growth of Amorphous Oxides. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 548-557	4	12
217	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 17551-1755	7 ^{11.5}	12
216	Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures. <i>ACS Nano</i> , 2020 , 14, 3509-3518	16.7	12
215	Synthesis, Characterization, and Thermal Properties of N-alkyl 即iketiminate Manganese Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 3017-3024	5.1	12
214	Solution-Processed Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. <i>ACS Applied Materials & Description of the Computation o</i>	9.5	12
213	Lanthanide Trichlorides by Reaction of Lanthanide Metals with Mercury(II) Chloride in Tetrahydrofuran. <i>Inorganic Syntheses</i> , 2007 , 136-141		12
212	Diverse Pathways in Ring-Opening Ziegler Polymerization of an Annulated Methylenecyclopropane. A New Single-Site Chain Transfer Mechanism. <i>Macromolecules</i> , 2003 , 36, 1775-1778	5.5	12
211	Exceptional Molecular Hyperpolarizabilities in Twisted Œlectron System Chromophores. Angewandte Chemie, 2005 , 117, 8136-8139	3.6	12
210	Electronic Properties of The Conductive Polymers [Si(Pc)O]xy)N With Different Doping Agents. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 349-352		12
209	Benzotrithiophene versus Benzo/Naphthodithiophene Building Blocks: The Effect of Star-Shaped versus Linear Conjugation on Their Electronic Structures. <i>Chemistry - A European Journal</i> , 2016 , 22, 6374	4- 8 18	12

208	16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. <i>Science China Chemistry</i> , 2022 , 65, 309-317	7.9	12	
207	Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. <i>Applied Physics Letters</i> , 2017 , 110, 073102	3.4	11	
206	How Close Is Too Close? Polymerization Behavior and Monomer-Dependent Reorganization of a Bimetallic Salphen Organotitanium Catalyst. <i>Organometallics</i> , 2018 , 37, 2429-2436	3.8	11	
205	Marked Cofuel Tuning of Combustion Synthesis Pathways for Metal Oxide Semiconductor Films. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900540	6.4	11	
204	Molecularly-Engineered Lubricants: Synthesis, Activation, and Tribological Characterization of Silver Complexes as Lubricant Additives. <i>Advanced Engineering Materials</i> , 2012 , 14, 101-105	3.5	11	
203	Highly Dispersed SiOx/Al2O3 Catalysts Illuminate the Reactivity of Isolated Silanol Sites. <i>Angewandte Chemie</i> , 2015 , 127, 13544-13549	3.6	11	
202	Near-field microwave microscopy of high-loxides grown on graphene with an organic seeding layer. <i>Applied Physics Letters</i> , 2013 , 103, 243105	3.4	11	
201	Large-Scale Synthesis of 1,2,3,4,5-Penta-Methylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 193-198		11	
200	Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and Amino-Olefin Copolymerization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20522-20528	16.4	11	
199	Effects of 1,8-diiodooctane on domain nanostructure and charge separation dynamics in PC71BM-based bulk heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23805-23818	13	11	
198	Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21492-21498	9.5	11	
197	Efficient carbon-supported heterogeneous molybdenum-dioxo catalyst for chemoselective reductive carbonyl coupling. <i>Catalysis Science and Technology</i> , 2017 , 7, 2165-2169	5.5	10	
196	Efficient Chemoselective Reduction of N-Oxides and Sulfoxides Using a Carbon-Supported Molybdenum-Dioxo Catalyst and Alcohol. <i>ChemCatChem</i> , 2019 , 11, 4139-4146	5.2	10	
195	Low-Loss Near-Infrared Hyperbolic Metamaterials with Epitaxial ITO-In2O3 Multilayers. <i>ACS Photonics</i> , 2018 , 5, 2000-2007	6.3	10	
194	Silver(I) Bis(pyrazolyl)methane Complexes and Their Implementation as Precursors for Metallic Silver Deposition. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 2626-2633	2.3	10	
193	Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning. <i>Tribology Letters</i> , 2013 , 49, 525-538	2.8	10	
192	Combining Optical Transparency with Electrical Conductivity: Challenges and Prospects 2010 , 1-29		10	
191	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic Solar Cells. <i>Advanced Energy Materials</i> ,2102	1721.8	10	

(2021-2021)

190	Carbon Free and Noble Metal Free Ni2Mo6S8 Electrocatalyst for Selective Electrosynthesis of H2O2. <i>Advanced Functional Materials</i> , 2021 , 31, 2104716	15.6	10
189	Friction and Wear Protection Performance of Synthetic Siloxane Lubricants. <i>Tribology Letters</i> , 2013 , 51, 365-376	2.8	9
188	Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOxâAl2O3. <i>Catalysis Letters</i> , 2014 , 144, 1832-1838	2.8	9
187	Quantitative statistical analysis of dielectric breakdown in zirconia-based self-assembled nanodielectrics. <i>ACS Nano</i> , 2012 , 6, 4452-60	16.7	9
186	Chattopadhyay et al. Reply:. <i>Physical Review Letters</i> , 2011 , 107,	7.4	9
185	Metal-Organic Chemical Vapor Deposition of Zn-In-Sn-O and Ga-In-Sn-O Transparent Conducting Oxide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 607, 345		9
184	YBa2Cu3O7âlbn MgO films grown by pulsed organometallic beam epitaxy and a grain boundary junction application. <i>Journal of Materials Research</i> , 1995 , 10, 2700-2707	2.5	9
183	Structureâtharge Transport Relationships in Fluoride-Doped Amorphous Semiconducting Indium Oxide: Combined Experimental and Theoretical Analysis. <i>Chemistry of Materials</i> , 2020 , 32, 805-820	9.6	9
182	Bis-Ferrocenyl-Pyridinediimine Trinuclear Mixed-Valent Complexes with Metal-Binding Dependent Electronic Coupling: Synthesis, Structures, and Redox-Spectroscopic Characterization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18715-18729	16.4	9
181	Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. <i>Angewandte Chemie</i> , 2020 , 132, 20029-20033	3.6	9
180	Boundary Lubrication Mechanisms for High-Performance Friction Modifiers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40203-40211	9.5	9
179	Direct Spectroscopic Evidence for Isolated Silanols in SiOx/Al2O3 and Their Formation Mechanism. Journal of Physical Chemistry C, 2017 , 121, 6060-6064	3.8	8
178	Side Chain and Solvent Direction of Film Morphology in Small-Molecule Organic Solar Materials. <i>Chemistry of Materials</i> , 2019 , 31, 8308-8319	9.6	8
177	Traction Characteristics of Siloxanes with Aryl and Cyclohexyl Branches. <i>Tribology Letters</i> , 2013 , 49, 301	-3.181	8
176	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. <i>Energy and Environmental Science</i> ,	35.4	8
175	Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors. <i>ACS Applied Materials & </i>	9.5	8
174	Germanium Fluoride Nanocages as Optically Transparent n-Type Materials and Their Endohedral Metallofullerene Derivatives. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1672-1684	16.4	8
173	Synthesis and Characterization of a Well-Defined Carbon Nanohorn-Supported Molybdenum Dioxo Catalyst by SMART-EM Imaging. Surface Structure at the Atomic Level. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 427-432	5.1	8

172	Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition. <i>Dalton Transactions</i> , 2017 , 46, 1172-1178	4.3	7
171	Catalytic One-Pot Conversion of Renewable Platform Chemicals to Hydrocarbon and Ether Biofuels through Tandem Hf(OTf) +Pd/C Catalysis. <i>ChemSusChem</i> , 2019 , 12, 5217	8.3	7
170	Recent Advances in Squaraine Dyes for Bulk-Heterojunction Organic Solar Cells. <i>Organic Photonics and Photovoltaics</i> , 2019 , 6, 1-16	5	7
169	High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	7
168	Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4223-4229	6.4	7
167	Realization of dual-channel organic field-effect transistors and their applications to chemical sensing. <i>Applied Physics Letters</i> , 2008 , 93, 133304	3.4	7
166	New electrically conductive polymers. Dopant and architectural effects on the collective properties of cofacially joined metallophthalocyanines. <i>Journal of Polymer Science, Polymer Symposia</i> , 2007 , 70, 1-2	29	7
165	Materials for superconducting electronics: In situ growth of PrGaO3 thin films by metalorganic chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1993 , 11, 1431-1434	2.9	7
164	Direct Imaging of The Lattice In Poly(Phthalocyaninato-Germoxane) Single Crystals. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 357-360		7
163	Unusual Carbon Monoxide Activation, Reduction, and Homologation Reactions of 5f-Element Organometallics. <i>ACS Symposium Series</i> , 1981 , 53-78	0.4	7
162	Oxidative dehydrogenation of propane over transition metal sulfides using sulfur as an alternative oxidant. <i>Catalysis Science and Technology</i> , 2020 , 10, 6840-6848	5.5	7
161	Printable Organic-Inorganic Nanoscale Multilayer Gate Dielectrics for Thin-Film Transistors Enabled by a Polymeric Organic Interlayer. <i>Advanced Functional Materials</i> , 2020 , 30, 2005069	15.6	7
160	Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. <i>Small</i> , 2021 , 17, e2007661	11	7
159	A Neutrally Charged Trimethylmanganese(III) Complex: Synthesis, Characterization, and Disproportionation Chemistry. <i>Organometallics</i> , 2016 , 35, 2683-2688	3.8	7
158	Oxide-Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. <i>Nano Letters</i> , 2019 , 19, 471-476	11.5	7
157	Energy-distinguishable bipolar UV photoelectron injection from LiCl-promoted FAPbCl3 perovskite nanorods. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13043-13049	13	6
156	Third- and Fifth-Order Nonlinear Optical Response of a TICT/Stilbene Hybrid Chromophore. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5363-5370	3.8	6
155	Multistates and Polyamorphism in Phase-Change KSbSe. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9261-9268	16.4	6

(1985-2019)

154	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. <i>ACS Energy Letters</i> , 2019 ,	20.1	6	
153	Quantum Interference and Substantial Property Tuning in ConjugatedRegio-Resistive Organic (ZORRO) Junctions. <i>Nano Letters</i> , 2019 , 19, 8956-8963	11.5	6	
152	Extrinsic and intrinsic photoresponse in monodisperse carbon nanotube thin film transistors. <i>Applied Physics Letters</i> , 2013 , 102, 083104	3.4	6	
151	Transparent Oxide Semiconductors: Fundamentals and Recent Progress 2010 , 31-59		6	
150	Lanthanide Trichlorides by Reaction of Lanthanide Metals with Mercury(II) Chloride in Tetrahydrofuran. <i>Inorganic Syntheses</i> , 2007 , 286-291		6	
149	Layer-by-Layer Assembly of Molecular Materials for Electrooptical Applications. <i>ACS Symposium Series</i> , 2004 , 30-43	0.4	6	
148	Suitability of metalorganic chemical vapor deposition-derived PrGaO3 films as buffer layers for YBa2Cu3O7â⊠ pulsed laser deposition. <i>Applied Physics Letters</i> , 1993 , 63, 3639-3641	3.4	6	
147	Electronic Structure of Metallophthalocyanines, MPc (M = Fe, Co, Ni, Cu, Zn, Mg) and Fluorinated MPc. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4055-4061	2.8	6	
146	Dielectric materials for electrolyte gated transistor applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9348-9376	7.1	6	
145	Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content. <i>Journal of Tribology</i> , 2017 , 139,	1.8	5	
144	Even and odd oligothiophene-bridged bis-naphthalimides for n-type and ambipolar organic field effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9439-9450	7.1	5	
143	Transition Metal Carbonyl Derivatives of Magnesium. <i>Inorganic Syntheses</i> , 2007 , 56-61		5	
142	Phase stability of heteroepitaxial polydomain BaTiO3 thin films. <i>Journal of Materials Research</i> , 2007 , 22, 1384-1389	2.5	5	
141	The interface between heterogeneous and homogeneous catalysis. <i>Topics in Catalysis</i> , 2005 , 34, 1-4	2.3	5	
140	Neue Materialien mit nichtlinearen optischen Eigenschaften durch topotaktische Selbstorganisation zu azentrischen, Chromophore enthaltenden Supergittern. <i>Angewandte Chemie</i> , 1995 , 107, 1646-1649	3.6	5	
139	Chromophoreâ B olymer Assemblies for Nonlinear Optical Materials. <i>ACS Symposium Series</i> , 1991 , 226-2	.4 9 .4	5	
138	Routes to Molecular Metals with Widely Variable Counterions and Band-Filling. <i>ACS Symposium Series</i> , 1988 , 224-237	0.4	5	
137	New Information On 2H-TaS2 Intercalation Chemistry With Organic Bases. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 121, 145-148		5	

136	Symmetry-Breaking Charge Separation in Phenylene-Bridged Perylenediimide Dimers. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 7633-7643	2.8	5
135	Charge generation mechanism tuned via film morphology in small molecule bulk-heterojunction photovoltaic materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15234-15252	7.1	5
134	Surface vs Homogeneous Organo-Hafnium Catalyst Ion-Pairing and Ligand Effects on Ethylene Homo- and Copolymerizations. <i>ACS Catalysis</i> , 2021 , 11, 3239-3250	13.1	5
133	Organic Salts Suppress Aggregation and Enhance the Hyperpolarizability of a ETwisted Chromophore. <i>Chemistry - A European Journal</i> , 2018 , 24, 15801-15805	4.8	5
132	New Opportunities for High-Performance Source-Gated Transistors Using Unconventional Materials. <i>Advanced Science</i> , 2021 , 8, e2101473	13.6	5
131	Regiospecific -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. <i>Materials Horizons</i> , 2021 ,	14.4	5
130	High Ethylene-Yield Oxidative Dehydrogenation of Ethane Using Sulfur Vapor as a âBoftâl①xidant. <i>ChemCatChem</i> , 2020 , 12, 4538-4542	5.2	4
129	Synthesis, structures, photophysical properties, and catalytic characteristics of 2,9-dimesityl-1,10-phenanthroline (dmesp) transition metal complexes. <i>Journal of Polymer Science</i> , 2020 , 58, 1130-1143	2.4	4
128	Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	4
127	CâN bond hydrogenolysis of aniline and cyclohexylamine over TaOxâAl2O3. <i>New Journal of Chemistry</i> , 2016 , 40, 6001-6004	3.6	4
126	Insight into Group 4 Metallocenium-Mediated Olefin Polymerization Reaction Coordinates Using a Metadynamics Approach. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 3491-7	6.4	4
125	Molecular Design Principles for Magneto-Electric Materials: All-Electric Susceptibilities Relevant to Optimal Molecular Chromophores. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 16491-16500	3.8	4
124	Modeling Polysiloxane Volume and Viscosity Variations With Molecular Structure and Thermodynamic State. <i>Journal of Tribology</i> , 2014 , 136,	1.8	4
123	Synthesis, characterization, and photoinduced electron transfer properties of core-functionalized perylene-3,4:9,10-bis(dicarboximide)s with pendant anthracenes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19049		4
122	Lead Oxides: Synthesis and Applications 2010 , 89-101		4
121	[[7,12:21,26-Diimino-19,14:28,33.35,5-Trinitrilo-5H-Pentabenzo[C,H,M,R,W] [1,6,11,16,21]-Pentaazacyclopentacosinato] (2-)]-Dioxouranium (VI) (Uranyl Superphthalocyanine)1. <i>Inorganic Syntheses</i> , 2007 , 97-100		4
120	Development and Implementation of New Volatile Cd and Zn Precursors for the Growth of Transparent Conducting Oxide Thin Films Via Mocvd. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 623, 317		4
119	Analysis of the fluoride effect on the phase-selective growth of TlBa2Ca2Cu3O9â\(Lthin films: Phase evolution and microstructure development. \(Journal of Materials Research, 2000\), 15, 1083-1097	2.5	4

118	The Effect of Chromophore Architecture and Deposition Conditions on the Optical and Microstructural Characteristics of Self-Assembled Chromophoric Thin Film NLO Materials. Molecular Crystals and Liquid Crystals, 1994, 240, 9-16		4
117	Deposition of Potassium Niobate Thin Films by Metalorganic Chemical Vapor Deposition and their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 392, 183		4
116	Metallophthalocyanine Based Low-Dimensional Polymers and Related Molecular Compounds. Charge Transport and Electronic Structure Studies of A Metal-Free âMolecular Metalâ\(\textit{IMolecular}\) Molecular and Liquid Crystals, 1985 , 118, 353-356		4
115	Processing-dependent thermal stability of a prototypical amorphous metal oxide. <i>Physical Review Materials</i> , 2018 , 2,	3.2	4
114	To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2% when the Donor Polymer is Halogen-Free. <i>Advanced Energy Materials</i> ,2102648	21.8	4
113	Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for High-Resolution and Enhanced Color-Selective Imaging. <i>Advanced Materials</i> , 2021 , e2106215	24	4
112	Flexible complementary circuits operating at sub-0.5 V via hybrid organic-inorganic electrolyte-gated transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
111	Photoinduced electron transfer from zinc meso-tetraphenylporphyrin to a one-dimensional perylenediimide aggregate: Probing anion delocalization effects. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 143-152	1.8	4
110	Leveraging Molecular Properties to Tailor Mixed-Dimensional Heterostructures beyond Energy Level Alignment. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4543-4557	6.4	4
109	Ultraviolet Light-Densified Oxide-Organic Self-Assembled Dielectrics: Processing Thin-Film Transistors at Room Temperature. <i>ACS Applied Materials & Dielectrics</i> , 2021, 13, 3445-3453	9.5	4
108	Processable High Electron Mobility Ecopolymers via Mesoscale Backbone Conformational Ordering. <i>Advanced Functional Materials</i> , 2021 , 31, 2009359	15.6	4
107	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. <i>Nature Communications</i> , 2021 , 12, 4937	17.4	4
106	2,3-Diphenylthieno[3,4-b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. <i>ACS Energy Letters</i> ,2118-2127	20.1	4
105	transport measurements reveal source of mobility enhancement of MoS and MoTe during dielectric deposition. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1273-1279	4	3
104	32.1: Invited Paper: Novel Approaches for Fabricating High-Performance Low-Temperature Solution-Processed Metal Oxide Transistors. <i>Digest of Technical Papers SID International Symposium</i> , 2014 , 45, 427-430	0.5	3
103	Organic Photovoltaics: Elucidating the Ultra-Fast Exciton Dissociation Mechanism in Disordered Materials. <i>Angewandte Chemie</i> , 2014 , 126, 7586-7590	3.6	3
102	New materials for superconducting electronics: Epitaxial growth of LaSrGaO4 and PrSrGaO4 dielectric thin films by MOCVD. <i>Chemical Vapor Deposition</i> , 1997 , 3, 78-81		3
101	Solvent Effects on the Molecular Quadratic Hyperpolarizabilites. <i>ACS Symposium Series</i> , 1995 , 57-65	0.4	3

100	Epitaxial growth of (Sr1â\(\text{Lax}\)CuO2 thin film with the infinite-layer structure by metal-organic chemical vapor deposition. <i>Applied Physics Letters</i> , 1996 , 69, 1951-1953	3.4	3
99	The Role of Intermolecular Interactions in Molecular Electronics. Advances in Chemistry Series, 1994, 223	3-241	3
98	Organometallic Chemical Vapor Deposition of Strontium Titanate thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 168, 375		3
97	Importance of Metalâ[ligand Bond Energies in Organometallic Chemistry: An Overview. <i>ACS Symposium Series</i> , 1990 , 1-17	0.4	3
96	Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium-Catalyzed Masking-Reagent-Free Propylene and AminoâDlefin Copolymerization. <i>Angewandte Chemie</i> , 2020 , 132, 20703-20709	3.6	3
95	Doping Indium Oxide Films with Amino-Polymers of Varying Nitrogen Content Markedly Affects Charge Transport and Mechanical Flexibility. <i>Advanced Functional Materials</i> , 2021 , 31, 2100451	15.6	3
94	Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. <i>Nature Communications</i> , 2021 , 12, 4530	17.4	3
93	Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 26-31	6.4	3
92	Surface Chemistry and Long-Term Stability of Amorphous ZnâBnâD Thin Films. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28151-28157	3.8	3
91	Molecular Encapsulation of Naphthalene Diimide (NDI) Based EConjugated Polymers: A Tool for Understanding Photoluminescence. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25005-25012	16.4	3
90	Bis(IB-Cyclooctatetraene)Uranium(IV). Inorganic Syntheses,149-154		3
89	Range-separated hybrid functionals for mixed dimensional heterojunctions: Application to phthalocyanines/MoS2. <i>APL Materials</i> , 2021 , 9, 121112	5.7	3
88	Correlation of Polysiloxane Molecular Structure to Shear-Thinning Power-Law Exponent Using Elastohydrodynamic Film Thickness Measurements. <i>Journal of Tribology</i> , 2015 , 137,	1.8	2
87	Modeling and Design of High-Speed Ultralow Voltage GaAs Electro-optic Modulators Enabled by Transparent Conducting Materials. <i>Journal of Lightwave Technology</i> , 2012 , 30, 1-9	4	2
86	Application of Transparent Oxide Semiconductors for Flexible Electronics 2010 , 265-297		2
85	Deposition and Performance Challenges of Transparent Conductive Oxides on Plastic Substrates 2010 , 103-140		2
84	Oxide Semiconductors: From Materials to Devices 2010 , 141-183		2
83	Metal-Organic Chemical Vapor Deposition Routes to Films of Transparent Conducting Oxides. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 495, 3		2

82	Novel Metal-Organic Chemical Vapor Deposition / T1F Annealing Route to Thin Films of Tl1Ba2Ca2Cu3O9+x. <i>Journal of Superconductivity and Novel Magnetism</i> , 1998 , 11, 133-134		2
81	Stability of Bilayer Films of YBa2Cu3O7 and Y-ZrO2 Grown on LaAlO3 by Pulsed Organometallic Beam Epitaxy. <i>Chemical Vapor Deposition</i> , 1998 , 4, 99-102		2
80	1,2,3,4,5-Pentamethylcyclopentadiene. <i>Inorganic Syntheses</i> , 2007 , 317-320		2
79	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 771, 1281		2
78	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 769, 1181		2
77	Second-order nonlinear optical response of thin films containing organic chromophores. Theoretical aspects. <i>Israel Journal of Chemistry</i> , 2000 , 40, 123-128	3.4	2
76	Liquid Source MOCVD of High Quality YBa2Cu3O7â⊠ Films on Polycrystalline and Amorphous Substrates. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 415, 255		2
75	Layer-by-Layer Molecular Assembly Approaches to the Construction of Thin Films Having High Second-Order Optical Nonlinearities. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 779		2
74	A New Hybrid Pvd/Omcvd Route to High-Tc Superconducting Thin Films of Tl-Ba-Ca-Cu-O. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 169, 619		2
73	Rational Design and Construction of Polymers with Large Second-Order Optical Nonlinearities. Synthetic Strategies for Enhanced Chromophore Number Densities and Frequency Doubling Temporal Stabilities. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1990 ,		2
72	Nonlinear Optical Materials Based on Benzobisthiazole. Electronic Structure/Molecular Architecture/Polarizability/Hyperpolarizability Relationships Derived from Electron Theory. <i>Materials Research Society Symposia Proceedings</i> , 1987 , 109, 149		2
71	Electrically Conductive Polymers Composed of Cofacially Joined Metallomacrocycles. Studies of Architecture and Electronic Structure in Phthalocyanine Materials by High Resolution Solid State NMR. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 118, 337-344		2
70	Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C-S bond activation <i>Nature Communications</i> , 2022 , 13, 144	17.4	2
69	Synthesis and Structure-Activity Characterization of a Single-Site MoO Catalytic Center Anchored on Reduced Graphene Oxide <i>Journal of the American Chemical Society</i> , 2021 , 143, 21532-21540	16.4	2
68	Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17153-17161	16.4	2
67	Catalyst Deactivation by Carbon Deposition: The Remarkable Case of Nickel Confined by Atomic Layer Deposition. <i>ChemCatChem</i> , 2021 , 13, 2988-3000	5.2	2
66	Suppressed Oxidation and Photodarkening of Hybrid Tin Iodide Perovskite Achieved with Reductive Organic Small Molecule. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4704-4710	6.1	2
65	Carbon Nanotubes: Enhanced Uniformity and Area Scaling in Carbon Nanotubeâ l Ullerene Bulk-Heterojunction Solar Cells Enabled by Solvent Additives (Adv. Energy Mater. 2/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2

64	Transistors: Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics (Adv. Mater. 1/2016). <i>Advanced Materials</i> , 2016 , 28, 203-203	24	2
63	Kinetic Isoconversion Loop Catalysis: A Reactor Operation Mode To Investigate Slow Catalyst Deactivation Processes, with Ni/Al2O3 for the Dry Reforming of Methane. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 2481-2491	3.9	2
62	Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 34901-34909	9.5	1
61	Versatile catalytic strategy for polar-functionalized, cross-linkable, self-healing, and photo-responsive polyolefins. <i>Science Bulletin</i> , 2020 , 65, 605-606	10.6	1
60	Emergent Properties in Locally Ordered Molecular Materials. Israel Journal of Chemistry, 2014, 54, 454-	4664	1
59	Transparent OLED Displays 2010 , 299-323		1
58	Oxide-Based Electrochromics 2010 , 325-341		1
57	p-Type Wide-Band-Gap Semiconductors for Transparent Electronics 2010 , 61-87		1
56	Carbon Nanotube Transparent Electrodes 2010 , 185-211		1
55	Application of Transparent Amorphous Oxide Thin Film Transistors to Electronic Paper 2010 , 213-229		1
54	Molecular Self-Assembly Routes to Optically Functional Thin Films: Electroluminescent Multilayer Structures. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 488, 385		1
53	Highly Transparent and Conductive CdO Thin Films as Anodes for Organic Light-Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		1
52	Volatile, Fluorine-Free Ketoiminate Precursors for MOCVD Growth of Lanthanide Oxide Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 623, 371		1
51	Epitaxial KNbo3 and its Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 541, 741		1
50	Effect of Higher Excited Configurations on the Linear and Nonlinear Optical Properties of Organic Molecules. <i>ACS Symposium Series</i> , 1996 , 116-132	0.4	1
49	Metal-Organic Chemical Vapor Deposition of Epitaxial Tl2Ba2Ca2Cu3O10â⊠ Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 335, 273		1
48	Synthesis and Nonlinear Optical Characteristics of Chromophore-Functionalized Polymers Having Chromophore-Centered Hydrogen-Bonding and Crosslinking Groups. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 247, 39		1
47	Heteroepitaxial Bi2Sr2CaCu2Ox Superconducting thin films Deposited on LaAlO3 by Solid Phase Epitaxy and OMCVD. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 275, 443		1

46	Routes to High-Tc Superconducting Tl-Ba-Ca-Cu-O Films Using Organometallic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 169, 623		1
45	Diverse Mechanistic Pathways in Single-Site Heterogeneous Catalysis: Alcohol Conversions Mediated by a High-Valent Carbon-Supported Molybdenum-Dioxo Catalyst. <i>ACS Catalysis</i> , 2022 , 12, 12	.47 ⁻³ 125	7 ¹
44	New Low-melting Cadmium Precursors for the Detailed Study of Texture Effects in MOCVD Derived CdO Thin-Films. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 721, 1		1
43	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting KBiSe. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6221-6228	16.4	1
42	"Soft" oxidative coupling of methane to ethylene: Mechanistic insights from combined experiment and theory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
41	Alternative Oxidants for the Catalytic Oxidative Coupling of Methane. <i>Angewandte Chemie</i> , 2021 , 133, 10596-10609	3.6	1
40	Supported Vanadium Catalysts for Selective Sulfur-Oxidative Dehydrogenation of Propane. <i>ChemCatChem</i> ,	5.2	1
39	Highly Volatile, Low Melting, Fluorine-Free Precursors for Metal-Organic Chemical Vapor Deposition of Lanthanide Oxide-Containing Thin Films 1999 , 5, 65		1
38	Beyond the Active Site. Cp*ZrMe3/Sulfated Alumina-Catalyzed Olefin Polymerization Tacticity via Catalyst???Surface Ion-Pairing. <i>ChemCatChem</i> , 2021 , 13, 2564-2569	5.2	0
37	Transition-Metal-Free Homopolymerization of Pyrrolo[2,3-:5,4-']bisthiazoles via Nucleophilic Aromatic Substitution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41094-41101	9.5	O
36	Perovskite Solar Cells: Simultaneous Bottom-Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small-Molecule Electrolytes (Adv. Mater. 40/2019). <i>Advanced Materials</i> , 2019 , 31, 1970283	24	
35	Organic Photovoltaics: Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer (Adv. Funct. Mater. 1/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2-2	15.6	
34	Innentitelbild: Organic Photovoltaics: Elucidating the Ultra-Fast Exciton Dissociation Mechanism in Disordered Materials (Angew. Chem. 29/2014). <i>Angewandte Chemie</i> , 2014 , 126, 7500-7500	3.6	
33	Polymer Solar Cells: Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells (Adv. Mater. 17/2012). <i>Advanced Materials</i> , 2012 , 24, 2362-2362	24	
32	Naphthodithiophene-Diketopyrrolopyrrole Small Molecule Donors for Efficient Solution-Processed Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1390, 34		
31	Transparent Metal Oxide Nanowire Electronics 2010 , 243-263		
30	Transparent Solar Cells Based on Organic Polymers 2010 , 343-372		
29	Organic Electro-Optic Modulators with Substantially Enhanced Performance Based on Transparent Electrodes 2010 , 373-401		

28	Naphthalenetetracarboxylic Diimides as Transparent Organic Semiconductors 2010, 403-415	
27	Transparent Metal Oxide Semiconductors as Gas Sensors 2010 , 417-442	
26	Solution-Processed Electronics Based on Transparent Conductive Oxides 2010 , 231-242	
25	MOCVD Precursor Delivery Monitored and Controlled Using UV Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 474, 69	
24	Retrospective: Frank Albert Cotton (1930-2007). Science, 2007, 316, 214	33-3
23	Interfacial Phenomena Affecting Charge Transport In Small Molecule Organic Thin-Film Transistors. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 965, 1	
22	Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III). Inorganic Syntheses, 2007, 260-263	
21	Chlorotris (IB-Cyclopentadienyl) Complexes of Uranium(IV) and Thorium(IV). <i>Inorganic Syntheses</i> , 2007 , 300-304	
20	Volatile 即iketonate Complexes of Calcium(II), Strontium(II), and Barium(II). <i>Inorganic Syntheses</i> , 2007 , 1-7	
19	Electron-Transporting Thiophene-Based Semiconductors Exhibiting Very High Field Effect Mobilities. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 814, 96	
18	Synthesis and Unprecedented Electro-Optic Response Properties of Twisted Esystem Chromophores. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 866, 126	
17	Molecular Dielectric Multilayers for Ultra-Low-Voltage Organic Thin Film Transistors. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1	
16	Novel Dielectric Materials for Organic Electronics. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1	
15	Bisperfluorophenyl-Substituted Thiophene Oligomers. Organic Semiconductors with Complementary-Type Carrier Mobility. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 736, 1	
14	Self-Assembly Processes for Organic Led Transport Layers and Electrode Passivation. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 558, 459	
13	Self-Assembly Processes for Organic Led Transport Layers and Electrode Passivation. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 561, 201	
12	Fabrication and characteristics of weak links between <code>Band</code> Eaxis normal grains of Y1Ba2Cu3O7â¼. <i>Journal of Materials Research</i> , 1996 , 11, 1086-1093	2.5
11	In Situ Heteroepitaxial Bi2Sr2CaCu2O8 Thin Films Prepared by Metalorganic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 335, 285	

LIST OF PUBLICATIONS

10	Frequency-Dependent Second Harmonic Generation in Acentric Chromophoric Self-Assembled NLO Materials. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 119	
9	Deposition of Strontium Barium Niobate Thin Films by Metal-Organic Chemical Vapor Deposition and Their Nonlinear Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 361, 167	
8	Deposition of Superconducting Tl-Ba-Ca-Cu-O Phases on Metal Foils by Metal-Organic Chemical Vapor Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 275, 365	
7	Vicrostructure and Electrical Properties of Kevlar/Polypyrrole Composite Fibers. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 175, 331	
6	Interactions, Architecture, and Bandwidths in âMolecular Metalsâ□A Synthetic and Electronic Structure Study of Monomeric and Cofacially Joined Dimeric Germanium Phthalocyanines. <i>Israel Journal of Chemistry</i> , 1986 , 27, 337-346	3.4
5	Third-Order Optical Susceptibilities of Molecular and Polymeric Materials. Symmetry, Frequency, and Chromophore Structure Dependence as Probed by Electron Theory. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 134, 665	
4	Electrically Conductive Molecular Composites Based Upon Ppbt and Metallophthalocyanines: Processing, Microstructure, and Electrochemistry. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 134, 673	
3	Atom vacancies and electronic transmission Stark effects in boron nanoflake junctions. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15208-15218	7.1
2	Oxide Transistors: Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport (Adv. Funct. Mater. 34/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6320-6320	15.6
1	Low-Temperature Thin-Film Combustion Synthesis of Metal-Oxide Semiconductors: Science and Technology 2022 , 159-184	