
Shigeyuki Betsuyaku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1806851/publications.pdf Version: 2024-02-01

SHICEVILLI RETSUVALL

#	Article	IF	CITATIONS
1	Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots. Plant Molecular Biology, 2022, 108, 225-239.	3.9	3
2	Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nature Communications, 2022, 13, 1216.	12.8	43
3	An Evolutionarily Conserved Coreceptor Gene Is Essential for CLAVATA Signaling in Marchantia polymorpha. Frontiers in Plant Science, 2021, 12, 657548.	3.6	16
4	CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. Plant Molecular Biology, 2020, 104, 561-574.	3.9	15
5	An Artificial Conversion of Roots into Organs with Shoot Stem Characteristics by Inducing Two Transcription Factors. IScience, 2020, 23, 101332.	4.1	3
6	The Rise of Evolutionary Molecular Plant–Microbe Interactions (EvoMPMI). Plant and Cell Physiology, 2020, 61, 223-224.	3.1	3
7	Automating measurements of fluorescent signals in freely moving plant leaf specimens. Plant Biotechnology, 2019, 36, 7-11.	1.0	0
8	Enrichment of Phosphatidylinositol 4,5-Bisphosphate in the Extra-Invasive Hyphal Membrane Promotes Colletotrichum Infection of Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 1514-1524.	3.1	33
9	A Versatile Method for Mounting Arabidopsis Leaves for Intravital Time-lapse Imaging. Journal of Visualized Experiments, 2019, , .	0.3	1
10	A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556, 235-238.	27.8	396
11	A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis inÂLotus japonicus. Nature Communications, 2018, 9, 499.	12.8	144
12	Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 8-16.	3.1	153
13	AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. Journal of General Plant Pathology, 2018, 84, 189-201.	1.0	25
14	Involvement of S-type anion channels in disease resistance against an oomycete pathogen in Arabidopsis seedlings. Communicative and Integrative Biology, 2018, 11, 1-6.	1.4	3
15	The effects of Lepidopteran oral secretion on plant wounds: A case study on the interaction between <i>Spodoptera litura</i> and <i>Arabidopsis thaliana</i> . Plant Biotechnology, 2018, 35, 237-242.	1.0	2
16	Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens. Plant and Cell Physiology, 2016, 57, 1854-1864.	3.1	69
17	Endogenous peptide ligand–receptor systems for diverse signaling networks in plants. Current Opinion in Plant Biology, 2014, 21, 140-146.	7.1	36
18	SUPPRESSOR OF <scp>LLP</scp> 1 1â€mediated C–terminal processing is critical for <scp>CLE</scp> 19 peptide activity. Plant Journal, 2013, 76, 970-981.	5.7	42

Shigeyuki Betsuyaku

#	Article	IF	CITATIONS
19	Differential Effects of the Peptides Stomagen, EPF1 and EPF2 on Activation of MAP Kinase MPK6 and the SPCH Protein Level. Plant and Cell Physiology, 2013, 54, 1253-1262.	3.1	51
20	The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. The Arabidopsis Book, 2011, 9, e0149.	0.5	69
21	Mitogen-Activated Protein Kinase Regulated by the CLAVATA Receptors Contributes to Shoot Apical Meristem Homeostasis. Plant and Cell Physiology, 2011, 52, 14-29.	3.1	130
22	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 4327-4327.	2.5	12
23	The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in <i>Lotus japonicus</i> . Development (Cambridge), 2010, 137, 4317-4325.	2.5	109
24	RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 3911-3920.	2.5	291
25	A large family of genes that share homology with CLE domain in Arabidopsis and rice. Plant Signaling and Behavior, 2008, 3, 337-339.	2.4	28
26	The Receptor-Like Kinase SOL2 Mediates CLE Signaling in Arabidopsis. Plant and Cell Physiology, 2008, 49, 1752-1757.	3.1	139
27	Interaction between SGT1 and Cytosolic/Nuclear HSC70 Chaperones Regulates <i>Arabidopsis</i> Immune Responses. Plant Cell, 2008, 19, 4061-4076.	6.6	187
28	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	3.9	356
29	Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal, 2006, 25, 2007-2016.	7.8	226
30	Victorin Triggers Programmed Cell Death and the Defense Response via Interaction with a Cell Surface Mediator. Plant and Cell Physiology, 2005, 46, 1787-1798.	3.1	39
31	Nitric Oxide and Reactive Oxygen Species Do Not Elicit Hypersensitive Cell Death but Induce Apoptosis in the Adjacent Cells During the Defense Response of Oat. Molecular Plant-Microbe Interactions, 2004, 17, 245-253.	2.6	102
32	Oat Retrotransposon OARE-1 Is Activated in Both Compatible and Incompatible Interactions with Pathogenic Fungi. Journal of General Plant Pathology, 2002, 68, 8-14.	1.0	2
33	OARE-1, a Ty1-copia Retrotransposon in Oat Activated by Abiotic and Biotic Stresses. Plant and Cell Physiology, 2001, 42, 1345-1354.	3.1	85
34	Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Research, 2001, 29, 4106-4113.	14.5	39