
Thomas Pichler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010, 48, 575-586.	10.3	513
2	Localized and Delocalized Electronic States in Single-Wall Carbon Nanotubes. Physical Review Letters, 1998, 80, 4729-4732.	7.8	395
3	Resonance Raman and infrared spectroscopy of carbon nanotubes. Chemical Physics Letters, 1994, 221, 53-58.	2.6	346
4	Confined linear carbon chains as a route to bulkÂcarbyne. Nature Materials, 2016, 15, 634-639.	27.5	341
5	Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes. Science, 2008, 320, 775-778.	12.6	322
6	X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein Journal of Nanotechnology, 2015, 6, 177-192.	2.8	319
7	Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Letters, 2010, 10, 3360-3366.	9.1	297
8	Determination of SWCNT diameters from the Raman response of the radial breathing mode. European Physical Journal B, 2001, 22, 307-320.	1.5	260
9	Functionalization of carbon nanotubes. Synthetic Metals, 2004, 141, 113-122.	3.9	250
10	Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Physical Review B, 2008, 78, .	3.2	243
11	The physical and chemical properties of heteronanotubes. Reviews of Modern Physics, 2010, 82, 1843-1885.	45.6	239
12	Linear Plasmon Dispersion in Single-Wall Carbon Nanotubes and the Collective Excitation Spectrum of Graphene. Physical Review Letters, 2008, 100, 196803.	7.8	211
13	Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy. Applied Physics Letters, 1999, 75, 2217-2219.	3.3	194
14	A Catalytic Reaction Inside a Singleâ€Walled Carbon Nanotube. Advanced Materials, 2008, 20, 1443-1449.	21.0	178
15	Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Physical Review B, 2002, 66, .	3.2	167
16	Nanofibrous and Graphene-Templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors. Chemistry of Materials, 2015, 27, 7403-7411.	6.7	164
17	Unusual High Degree of Unperturbed Environment in the Interior of Single-Wall Carbon Nanotubes. Physical Review Letters, 2003, 90, 225501.	7.8	158
18	Equilibrium phases in K- and Rb-dopedC60fromin situinfrared reflectivity measurements. Physical Review B, 1994, 49, 15879-15889.	3.2	151

#	Article	IF	CITATIONS
19	Metallic Polymers ofC60Inside Single-Walled Carbon Nanotubes. Physical Review Letters, 2001, 87, 267401.	7.8	140
20	Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors. Advanced Materials, 2015, 27, 6714-6721.	21.0	137
21	Transition from a Tomonaga-Luttinger Liquid to a Fermi Liquid in Potassium-Intercalated Bundles of Single-Wall Carbon Nanotubes. Physical Review Letters, 2004, 93, 096805.	7.8	131
22	Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters, 2006, 421, 129-133.	2.6	130
23	Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chemical Physics Letters, 2004, 383, 362-367.	2.6	122
24	On the Graphitization Nature of Oxides for the Formation of Carbon Nanostructures. Chemistry of Materials, 2007, 19, 4105-4107.	6.7	121
25	Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1209-1215.	9.1	120
26	Anisotropy and Interplane Interactions in the Dielectric Response of Graphite. Physical Review Letters, 2002, 89, 076402.	7.8	119
27	Formation and electronic properties ofBC3single-wall nanotubes upon boron substitution of carbon nanotubes. Physical Review B, 2004, 69, .	3.2	119
28	Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock. Journal of Physical Chemistry C, 2007, 111, 2879-2884.	3.1	119
29	Filling factors, structural, and electronic properties ofC60molecules in single-wall carbon nanotubes. Physical Review B, 2002, 65, .	3.2	108
30	Electron-Electron Correlation in Graphite: A Combined Angle-Resolved Photoemission and First-Principles Study. Physical Review Letters, 2008, 100, 037601.	7.8	103
31	Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics. ACS Nano, 2013, 7, 556-565.	14.6	102
32	Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds. ACS Nano, 2013, 7, 9249-9259.	14.6	100
33	Electronic structure of multiwall boron nitride nanotubes. Physical Review B, 2003, 67, .	3.2	99
34	Thermal Decomposition of Ferrocene as a Method for Production of Single-Walled Carbon Nanotubes without Additional Carbon Sources. Journal of Physical Chemistry B, 2006, 110, 20973-20977.	2.6	96
35	Position and momentum mapping of vibrations in graphene nanostructures. Nature, 2019, 573, 247-250.	27.8	96
36	Efficient production of B-substituted single-wall carbon nanotubes. Chemical Physics Letters, 2003, 378, 516-520.	2.6	95

#	Article	IF	CITATIONS
37	Infrared spectroscopy of fullerenes. Journal of Physics Condensed Matter, 1995, 7, 6601-6624.	1.8	94
38	Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chemical Physics Letters, 2002, 363, 567-572.	2.6	93
39	Electronic and optical properties of alkali-metal-intercalated single-wall carbon nanotubes. Physical Review B, 2003, 67, .	3.2	93
40	Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing. ACS Applied Materials & Interfaces, 2019, 11, 14175-14181.	8.0	93
41	Oxide-Driven Carbon Nanotube Growth in Supported Catalyst CVD. Journal of the American Chemical Society, 2007, 129, 15772-15773.	13.7	91
42	Phase separation inKxC60(0â‰¤â‰ø) as obtained fromin situRaman spectroscopy. Physical Review B, 1992, 45, 13841-13844.	3.2	90
43	Joys and Pitfalls of Fermi Surface Mapping inBi2Sr2CaCu2O8+δUsing Angle Resolved Photoemission. Physical Review Letters, 2000, 84, 4453-4456.	7.8	88
44	Electron energy-loss spectroscopy studies of single wall carbon nanotubes. Carbon, 1999, 37, 733-738.	10.3	83
45	Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Physical Review B, 2009, 80, .	3.2	83
46	Diameter selective doping of single wall carbon nanotubes. Physical Chemistry Chemical Physics, 2003, 5, 582-587.	2.8	82
47	Synthesis and electronic properties of B-doped single wall carbon nanotubes. Carbon, 2004, 42, 1123-1126.	10.3	81
48	Electronic structure and electron-phonon coupling of doped graphene layers in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>KC</mml:mtext></mml:mrow><mml:mn>& Physical Review B, 2009, 79, .</mml:mn></mml:msub></mml:mrow></mml:math 	3< ∦nn l:m	n>११ mml:msı
49	MonometallofullereneTm@C82: Proof of an Encapsulated Divalent Tm Ion by High-Energy Spectroscopy. Physical Review Letters, 1997, 79, 3026-3029.	7.8	80
50	On-Ball Doping of Fullerenes: The Electronic Structure ofC59N Dimers from Experiment and Theory. Physical Review Letters, 1997, 78, 4249-4252.	7.8	79
51	Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Physical Review B, 2008, 77, .	3.2	79
52	Electronic structure of pristine and intercalatedSc3N@C80metallofullerene. Physical Review B, 2002, 66, .	3.2	78
53	Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron–phonon coupling in graphene layers. Physica Status Solidi (B): Basic Research, 2014, 251, 2337-2355.	1.5	75
54	Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. Journal of Applied Physics, 2005, 97, 056102.	2.5	74

#	Article	IF	CITATIONS
55	Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Physical Review B, 2009, 80, .	3.2	73
56	Size of Electron-Hole Pairs inï€-Conjugated Systems. Physical Review Letters, 1999, 83, 1443-1446.	7.8	70
57	Electronic transitions in KxC60 (0 ⩼ x ⩼ 6) from in situ absorption spectroscopy. Solid State Communications, 1992, 81, 859-862.	1.9	69
58	The Electronic and Vibrational Structure of Endohedral Tm3N@C80 (I) Fullerene â^ Proof of an Encaged Tm3+. Journal of Physical Chemistry A, 2005, 109, 7088-7093.	2.5	69
59	Angle-resolved photoemission study of the graphite intercalation compoundKC8: A key to graphene. Physical Review B, 2009, 80, .	3.2	69
60	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie - International Edition, 2017, 56, 15267-15273.	13.8	69
61	A one step approach to B-doped single-walled carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 5676.	6.7	68
62	Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer. Europhysics Letters, 2012, 97, 57005.	2.0	68
63	High quality double wall carbon nanotubes with a defined diameter distribution by chemical vapor deposition from alcohol. Carbon, 2006, 44, 3177-3182.	10.3	66
64	Potassium intercalated bundles of single-wall carbon nanotubes: electronic structure and optical properties. Solid State Communications, 1999, 109, 721-726.	1.9	65
65	Quasicontinuous electron and hole doping ofC60peapods. Physical Review B, 2003, 67, .	3.2	64
66	Electronic properties of FeCl3-intercalated single-wall carbon nanotubes. Physical Review B, 2004, 70,	3.2	64
67	Screening the Missing Electron: Nanochemistry in Action. Physical Review Letters, 2009, 102, 046804.	7.8	64
68	Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology, 2007, 18, 375601.	2.6	63
69	Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance. Materials Chemistry Frontiers, 2017, 1, 278-285.	5.9	62
70	Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Physical Review Materials, 2017, 1, .	2.4	61
71	Evidence for substitutional boron in doped single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	60
72	Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale, 2015, 7, 1383-1391.	5.6	60

#	Article	IF	CITATIONS
73	Carbon Nanotube Chirality Determines Properties of Encapsulated Linear Carbon Chain. Nano Letters, 2018, 18, 5426-5431.	9.1	60
74	Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2019, 58, 5763-5768.	13.8	60
75	Catalyst Volume to Surface Area Constraints for Nucleating Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 8234-8241.	2.6	59
76	Unraveling van Hove singularities in x-ray absorption response of single-wall carbon nanotubes. Physical Review B, 2007, 75, .	3.2	58
77	Diameter selective charge transfer in p- and n-doped single wall carbon nanotubes synthesized by the HiPCO method. Chemical Communications, 2002, , 1730-1731.	4.1	57
78	Influence of the Catalyst Hydrogen Pretreatment on the Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes. Chemistry of Materials, 2007, 19, 6131-6137.	6.7	56
79	Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nanoâ€Test Tube Chemistry. Advanced Materials, 2010, 22, 3685-3689.	21.0	54
80	Infrared response of multiwalled boron nitride nanotubes. Chemical Communications, 2003, , 82-83.	4.1	53
81	Electronic and mechanical coupling between guest and host in carbon peapods. Physical Review B, 2004, 69, .	3.2	52
82	Spectroscopic investigation of nitrogen doped graphene. Applied Physics Letters, 2012, 101, .	3.3	52
83	Electron-vibrational mode coupling in K3C60 from IR-transmittance and reflectivity. Solid State Communications, 1993, 86, 221-225.	1.9	50
84	lsotope-Engineered Single-Wall Carbon Nanotubes; A Key Material for Magnetic Studies. Journal of Physical Chemistry C, 2007, 111, 4094-4098.	3.1	50
85	Direct observation of a dispersionless impurity band in hydrogenated graphene. Physical Review B, 2011, 83, .	3.2	49
86	Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology, 2006, 17, 2415-2419.	2.6	47
87	Nanoengineered Catalyst Particles as a Key for Tailor-Made Carbon Nanotubes. Chemistry of Materials, 2007, 19, 5006-5009.	6.7	47
88	Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon, 2007, 45, 55-61.	10.3	45
89	Polyyne electronic and vibrational properties under environmental interactions. Physical Review B, 2016, 94, .	3.2	45
90	Doping of metal–organic frameworks towards resistive sensing. Scientific Reports, 2017, 7, 2439.	3.3	45

#	Article	IF	CITATIONS
91	Electronic properties of intercalated single-wall carbon nanotubes and C60peapods. New Journal of Physics, 2003, 5, 156-156.	2.9	43
92	Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances. Chemistry of Materials, 2011, 23, 2201-2208.	6.7	43
93	Analysis of the concentration of C 60 fullerenes in single wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2003, 76, 449-456.	2.3	41
94	High-Quality Double-Walled Carbon Nanotubes Grown by a Cold-Walled Radio Frequency Chemical Vapor Deposition Process. Chemistry of Materials, 2008, 20, 3466-3472.	6.7	41
95	Double-Wall Carbon Nanotubes. Topics in Applied Physics, 2007, , 495-530.	0.8	40
96	Selective Enhancement of Photoluminescence in Filled Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2012, 22, 3202-3208.	14.9	40
97	Proof for trivalent Sc ions inSc2@C84from high-energy spectroscopy. Physical Review B, 2000, 62, 13196-13201.	3.2	38
98	A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond. Physica Status Solidi (B): Basic Research, 2012, 249, 2656-2659.	1.5	38
99	Revealing the Small-Bundle Internal Structure of Vertically Aligned Single-Walled Carbon Nanotube Filmsâ€. Journal of Physical Chemistry C, 2007, 111, 17861-17864.	3.1	37
100	Tailoring carbon nanostructures via temperature and laser irradiation. Chemical Physics Letters, 2005, 407, 254-259.	2.6	36
101	Effects of the reaction atmosphere composition on the synthesis of single and multiwalled nitrogen-doped nanotubes. Journal of Chemical Physics, 2007, 127, 184709.	3.0	36
102	Doppler imaging of stellar surface structure. Astronomy and Astrophysics, 2003, 411, 595-604.	5.1	35
103	Catalyst size dependencies for carbon nanotube synthesis. Physica Status Solidi (B): Basic Research, 2007, 244, 3911-3915.	1.5	35
104	Electronic structure and optical properties of concentric-shell fullerenes from electron-energy-loss spectroscopy in transmission. Physical Review B, 2001, 63, .	3.2	34
105	Structural, optical, and electronic properties of vanadium oxide nanotubes. Physical Review B, 2005, 72, .	3.2	34
106	Carbon ahead. Nature Materials, 2007, 6, 332-333.	27.5	34
107	Spectroscopic Characterization of N-Doped Single-Walled Carbon Nanotube Strands: An X-ray Photoelectron Spectroscopy and Raman Study. Journal of Nanoscience and Nanotechnology, 2010, 10, 3959-3964.	0.9	34
108	Detailed analysis of the Raman response ofn-doped double-wall carbon nanotubes. Physical Review B, 2006, 74, .	3.2	33

#	Article	IF	CITATIONS
109	Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon, 2013, 59, 237-245.	10.3	33
110	Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics. Journal of Materials Chemistry A, 2020, 8, 693-705.	10.3	33
111	Spectroscopic analysis of single-wall carbon nanotubes and carbon nanotube peapods. Diamond and Related Materials, 2002, 11, 957-960.	3.9	32
112	An electron energy-loss study of the structural and electronic properties of magnetically aligned single wall carbon nanotubes. Synthetic Metals, 2001, 121, 1183-1186.	3.9	31
113	Electronic structure of the trimetal nitride fullereneDy3N@C80. Physical Review B, 2005, 72, .	3.2	31
114	Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes. ACS Nano, 2014, 8, 1375-1383.	14.6	31
115	Electronic properties of barium-intercalated single-wall carbon nanotubes. Physical Review B, 2004, 70, .	3.2	30
116	Tuning Localized Transverse Surface Plasmon Resonance in Electricity-Selected Single-Wall Carbon Nanotubes by Electrochemical Doping. Physical Review Letters, 2015, 114, 176807.	7.8	30
117	2D Heterostructures Derived from MoS ₂ â€Templated, Cobaltâ€Containing Conjugated Microporous Polymer Sandwiches for the Oxygen Reduction Reaction and Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 709-715.	3.4	30
118	Raman Scattering Cross Section of Confined Carbyne. Nano Letters, 2020, 20, 6750-6755.	9.1	30
119	The electronic structure of from high energy spectroscopy. European Physical Journal B, 1998, 1, 11-17.	1.5	29
120	Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3nanowires inside carbon nanotubes. Physical Review B, 2011, 83, .	3.2	29
121	Electronic structure of Eu atomic wires encapsulated inside single-wall carbon nanotubes. Physical Review B, 2012, 86, .	3.2	29
122	Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2575-2580.	1.5	29
123	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale, 2017, 9, 7998-8006.	5.6	29
124	Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials, 2018, 8, 912.	4.1	29
125	The metallofullerene Tm@C 82 : isomer-selective electronic structure. Applied Physics A: Materials Science and Processing, 1998, 66, 281-285.	2.3	28

#	Article	IF	CITATIONS
127	One-step catalyst-free generation of carbon nanospheres via laser-induced pyrolysis of anthracene. Journal of Solid State Chemistry, 2008, 181, 2796-2803.	2.9	27
128	Toward Confined Carbyne with Tailored Properties. Nano Letters, 2021, 21, 1096-1101.	9.1	27
129	Elimination of metal catalyst and carbon-like impurities from single-wall carbon nanotube raw material. Applied Physics A: Materials Science and Processing, 2004, 78, 311-314.	2.3	26
130	On the effects of solution and reaction parameters for the aerosol-assisted CVD growth of long carbon nanotubes. Applied Physics A: Materials Science and Processing, 2006, 82, 719-725.	2.3	26
131	Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology, 2007, 18, 275610.	2.6	26
132	CVD growth of singleâ€walled Bâ€doped carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 1935-1938.	1.5	26
133	Raman response of stage-1 graphite intercalation compounds revisited. Physical Review B, 2012, 86, .	3.2	26
134	Extraction of Linear Carbon Chains Unravels the Role of the Carbon Nanotube Host. ACS Nano, 2018, 12, 8477-8484.	14.6	26
135	Normal-state Fermi surface of pristine and Pb-doped Bi2Sr2CaCu2O8+δ from angle-resolved photoemission measurements and its photon energy independence. Physical Review B, 2000, 62, 154-157.	3.2	25
136	Raman response of FeCl ₃ intercalated singleâ€wall carbon nanotubes at high doping. Physica Status Solidi (B): Basic Research, 2009, 246, 2732-2736.	1.5	25
137	Selective phase growth and precise-layer control in MoTe2. Communications Materials, 2020, 1, .	6.9	25
138	Filling factor and electronic structure ofDy3N@C80filled single-wall carbon nanotubes studied by photoemission spectroscopy. Physical Review B, 2006, 73, .	3.2	24
139	Eutectic limit for the growth of carbon nanotubes from a thin iron film by chemical vapor deposition of cyclohexane. Chemical Physics Letters, 2006, 425, 301-305.	2.6	24
140	Chemical vapor deposition of functionalized singleâ€walled carbon nanotubes with defined nitrogen doping. Physica Status Solidi (B): Basic Research, 2007, 244, 4051-4055.	1.5	24
141	Atomically precise semiconductor—graphene and hBN interfaces by Ge intercalation. Scientific Reports, 2015, 5, 17700.	3.3	24
142	Probing Exciton Dispersions of Freestanding Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2by Momentum-Resolved Electron Energy-Loss Spectroscopy. Physical Review Letters, 2020, 124, 087401.</mml:mn></mml:mrow></mml:msub></mml:math 	ml ?:8 n> <td>mml:mrow><,</td>	mml:mrow><,
143	Ferrocene encapsulated in singleâ€wall carbon nanotubes: a precursor to secondary tubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4102-4105.	1.5	23
144	Potassium-intercalated single-wall carbon nanotube bundles: Archetypes for semiconductor/metal hybrid systems. Physical Review B, 2009, 79, .	3.2	23

#	Article	IF	CITATIONS
145	Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Physical Review B, 2013, 87, .	3.2	23
146	Nickel clusters embedded in carbon nanotubes as high performance magnets. Scientific Reports, 2015, 5, 15033.	3.3	23
147	Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon, 2021, 171, 221-229.	10.3	23
148	Raman resonance profile of an individual confined long linear carbon chain. Carbon, 2018, 139, 581-585.	10.3	22
149	Vibrational structure of C84 and Sc2@C84 analyzed by IR spectroscopy. Journal of Molecular Structure, 1997, 408-409, 359-362.	3.6	21
150	Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.	10.3	21
151	Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. Journal of Materials Science, 2018, 53, 13018-13029.	3.7	21
152	CHARGE TRANSFER IN DOPED SINGLE WALL CARBON NANOTUBES. Synthetic Metals, 2003, 135-136, 717-719.	3.9	20
153	Influence of theC60filling on the nature of the metallic ground state in intercalated peapods. Physical Review B, 2005, 72, .	3.2	20
154	Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3101-3105.	1.5	20
155	Incidence of the Tomonaga-Luttinger liquid state on the NMR spin-lattice relaxation in carbon nanotubes. Europhysics Letters, 2010, 90, 17004.	2.0	20
156	Ethanol-Promoted Fabrication of Tungsten Oxide Nanobelts with Defined Crystal Orientation. Journal of Physical Chemistry C, 2010, 114, 10-14.	3.1	20
157	Temperature dependence of inner tube growth from ferroceneâ€filled singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2492-2495.	1.5	20
158	A Resonant Photoemission Insight to the Electronic Structure of Gd Nanowires Templated in the Hollow Core of SWCNTs. Materials Express, 2011, 1, 30-35.	0.5	20
159	Anti-Stokes Raman Scattering of Single Carbyne Chains. ACS Nano, 2021, 15, 12249-12255.	14.6	20
160	Vibrational analysis of IR reflection-transmission from single crystal C60. European Physical Journal B, 1994, 96, 39-45.	1.5	19
161	Air stability of single crystal Rb1C60 from infrared reflectivity measurements. Applied Physics Letters, 1995, 66, 1211-1213.	3.3	19
162	Electronic properties of potassium-intercalatedC60peapods. Physical Review B, 2004, 69, .	3.2	19

#	Article	IF	CITATIONS
163	Formation of novel nanostructures using carbon nanotubes as a frame. Synthetic Metals, 2005, 153, 345-348.	3.9	19
164	Bonding environment and electronic structure of Gd metallofullerene and Gd nanowire filled singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2038-2041.	1.5	19
165	Exposing Multiple Roles of H ₂ O in High-Temperature Enhanced Carbon Nanotube Synthesis. Chemistry of Materials, 2008, 20, 6586-6588.	6.7	19
166	Nitrogenâ€doped SWCNT synthesis using ammonia and carbon monoxide. Physica Status Solidi (B): Basic Research, 2010, 247, 2726-2729.	1.5	19
167	Combined experimental and <i>ab initio</i> study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality. Physical Review B, 2010, 82, .	3.2	19
168	Tunable Interface Properties between Pentacene and Graphene on the SiC Substrate. Journal of Physical Chemistry C, 2013, 117, 3969-3975.	3.1	19
169	Carbon nanotubes from enhanced direct injection pyrolytic synthesis as templates for long linear carbon chain formation. Physica Status Solidi (B): Basic Research, 2013, 250, 2611-2615.	1.5	19
170	On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. Carbon, 2015, 81, 91-95.	10.3	19
171	Exchange coupling in a frustrated trimetric molecular magnet reversed by a 1D nano-confinement. Nanoscale, 2019, 11, 10615-10621.	5.6	19
172	Nanochemical reactions by laser annealing of ferrocene filled singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2488-2491.	1.5	18
173	<i>In situ</i> filling of metallic singleâ€walled carbon nanotubes with ferrocene molecules. Physica Status Solidi (B): Basic Research, 2012, 249, 2408-2411.	1.5	18
174	A Fourier transform Raman spectrometer with visible laser excitation. Journal of Raman Spectroscopy, 2015, 46, 327-332.	2.5	18
175	Selective Enhancement of Inner Tube Photoluminescence in Filled Doubleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2016, 26, 4874-4881.	14.9	18
176	Silver Chloride Encapsulation-Induced Modifications of Raman Modes of Metallicity-Sorted Semiconducting Single-Walled Carbon Nanotubes. Journal of Spectroscopy, 2018, 2018, 1-9.	1.3	18
177	The growth of new extended carbon nanophases from ferrocene inside singleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700158.	2.4	17
178	The electronic structure of polymerized fullerenes and dimerized heterofullerenes. Applied Physics A: Materials Science and Processing, 1997, 64, 301-305.	2.3	16
179	Electronic structures of the pristine and K-intercalatedTm3N@C80endohedral fullerenes. Physical Review B, 2005, 72, .	3.2	16
180	Analysis of the anisotropy of excitons in pentacene single crystals using reflectivity measurements and electron energy-loss spectroscopy. Physical Review B, 2006, 74, .	3.2	16

#	Article	IF	CITATIONS
181	Tailoring the diameter, density and number of walls of carbon nanotubes through predefined catalyst particles. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1382-1385.	1.8	16
182	Templated direct growth of ultra-thin double-walled carbon nanotubes. Nanoscale, 2018, 10, 21254-21261.	5.6	16
183	On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis. Applied Physics A: Materials Science and Processing, 2005, 80, 1653-1656.	2.3	15
184	Capillary filling of singleâ€walled carbon nanotubes with ferrocene in an organic solvent. Physica Status Solidi (B): Basic Research, 2008, 245, 1983-1985.	1.5	15
185	Identifying the electron spin resonance of conduction electrons in alkali doped SWCNTs. Physica Status Solidi (B): Basic Research, 2009, 246, 2760-2763.	1.5	15
186	Electronic properties of singleâ€walled carbon nanotubes encapsulating a cerium organometallic compound. Physica Status Solidi (B): Basic Research, 2009, 246, 2626-2630.	1.5	15
187	Study of the role of Fe based catalysts on the growth of Bâ€doped SWCNTs synthesized by CVD. Physica Status Solidi (B): Basic Research, 2009, 246, 2518-2522.	1.5	15
188	A broadband and high throughput single-monochromator Raman spectrometer: Application for single-wall carbon nanotubes. Review of Scientific Instruments, 2011, 82, 023905.	1.3	15
189	Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2485-2490.	1.5	15
190	Potassium intercalated multiwalled carbon nanotubes. Carbon, 2016, 105, 90-95.	10.3	15
191	Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	15
192	Single-Walled Carbon Nanotubes Synthesis: A Direct Comparison of Laser Ablation and Carbon Arc Routes. Journal of Nanoscience and Nanotechnology, 2008, 8, 6178-6186.	0.9	14
193	Defect modulated Raman response of KC ₈ single crystals. Physica Status Solidi (B): Basic Research, 2011, 248, 2744-2747.	1.5	14
194	Electron Spectroscopy of Single Quantum Objects To Directly Correlate the Local Structure to Their Electronic Transport and Optical Properties. Nano Letters, 2016, 16, 3661-3667.	9.1	14
195	Environmental control of electron–phonon coupling in barium doped graphene. 2D Materials, 2016, 3, 045003.	4.4	14
196	Characterizing the maximum number of layers in chemically exfoliated graphene. Scientific Reports, 2019, 9, 19480.	3.3	14
197	Carbon nanotubes grown from individual gas phase prepared iron catalyst particles. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1786-1790.	1.8	13
198	Cyclohexane triggers staged growth of pure and vertically aligned single wall carbon nanotubes. Chemical Physics Letters, 2008, 454, 332-336.	2.6	13

#	Article	IF	CITATIONS
199	Observation of conduction electron spin resonance in boron-doped diamond. Physical Review B, 2013, 87, .	3.2	13
200	Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	13
201	Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. Nano Letters, 2018, 18, 3920-3925.	9.1	13
202	Oxidation stability of confined linear carbon chains, carbon nanotubes, and graphene nanoribbons as 1D nanocarbons. Nanoscale, 2019, 11, 15253-15258.	5.6	13
203	Electronic absorption and vibrational spectroscopy of azafullerene C59HN and its oxide C59HNO. Perkin Transactions II RSC, 2000, , 2361-2362.	1.1	12
204	Thermal Stability and High Temperature Graphitization of Bisazafullerene (C59N)2As Studied by IR and Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 11964-11969.	2.6	12
205	Functionalizing Single-Wall Carbon Nanotubes in Hollow Cathode Glow Discharges. Plasma Chemistry and Plasma Processing, 2009, 29, 79-90.	2.4	12
206	Hydrogen activated axial inter-conversion in SiC nanowires. Journal of Solid State Chemistry, 2009, 182, 602-607.	2.9	12
207	Channeling of charge carrier plasmons in carbon nanotubes. Physical Review B, 2012, 85, .	3.2	12
208	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie, 2017, 129, 15469-15475.	2.0	12
209	Gitteröffnung durch reduktive kovalente Volumenâ€Funktionalisierung von schwarzem Phosphor. Angewandte Chemie, 2019, 131, 5820-5826.	2.0	12
210	A continuous synthesis of carbon nanotubes by dc thermal plasma jet. Applied Physics A: Materials Science and Processing, 2008, 91, 223-228.	2.3	11
211	Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes. Carbon, 2014, 74, 282-290.	10.3	11
212	Doped carbon nanotubes as a model system of biased graphene. Physical Review B, 2017, 96, .	3.2	11
213	Unravel the Active Site in Nitrogenâ€Doped Doubleâ€Walled Carbon Nanotubes for Nitrogen Dioxide Gas Sensor. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800004.	1.8	11
214	Comparison of Doping Levels of Singleâ€Walled Carbon Nanotubes Synthesized by Arcâ€Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Physica Status Solidi (B): Basic Research, 2018, 255, 1800178.	1.5	11
215	Iron filled singlewalled carbon nanotubes – synthesis and characteristic properties. Physica Status Solidi (B): Basic Research, 2006, 243, 3277-3280.	1.5	10
216	Synthesis of single wall carbon nanotubes with invariant diameters using a modified laser assisted chemical vapour deposition route. Nanotechnology, 2006, 17, 5469-5473.	2.6	10

#	Article	IF	CITATIONS
217	Electron spin resonance in alkali doped SWCNTs. Physica Status Solidi (B): Basic Research, 2008, 245, 1975-1978.	1.5	10
218	Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2512-2518.	1.5	10
219	Raman and XPS analyses of pristine and annealed N-doped double-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2558-2563.	1.5	10
220	Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
221	Very high boron-doping on single-walled carbon nanotubes from a solid precursor. Carbon, 2018, 140, 259-264.	10.3	10
222	Unraveling the Excitonic Transition and Associated Dynamics in Confined Long Linear Carbon Chains with Timeâ€Resolved Resonance Raman Scattering. Laser and Photonics Reviews, 2021, 15, 2100259.	8.7	10
223	Equilibrium phases in alkali metal doped C60 films and single crystals from in situ IR-reflectivity. Synthetic Metals, 1995, 70, 1329-1332.	3.9	9
224	Bulk quantity and physical properties of boron nitride nanocapsules with a narrow size distribution. Carbon, 2005, 43, 615-621.	10.3	9
225	Catalytic decomposition of n-heptane for the growth of high quality single wall carbon nanotubes. Chemical Physics Letters, 2006, 428, 416-420.	2.6	9
226	Lowâ€temperature growth of singleâ€wall carbon nanotubes inside nano test tubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2730-2733.	1.5	9
227	Interband and plasma excitations in single-walled carbon nanotubes and graphite in inelastic x-ray and electron scattering. Physical Review B, 2010, 81, .	3.2	9
228	Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes. ACS Nano, 2020, 14, 11254-11261.	14.6	9
229	The electronic structure of potassium intercalated Tm@C82. Synthetic Metals, 1999, 103, 2470-2473.	3.9	8
230	The topology of the Fermi surface of Bi2Sr2CaCu2O8â~δ from angle resolved photoemission. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2099-2102.	1.2	8
231	Single-wall carbon nanotubes prepared with different kinds of Ni–Co catalysts: Raman and optical spectrum analysis. Carbon, 2007, 45, 196-202.	10.3	8
232	A parametric study of the synthesis and purification of single-walled carbon nanotubes using the high-pressure carbon monoxide process. Applied Physics A: Materials Science and Processing, 2008, 90, 637-643.	2.3	8
233	On the graphitisation role of oxide supports in carbon nanotube CVD synthesis. Physica Status Solidi (B): Basic Research, 2008, 245, 1939-1942.	1.5	8
234	La@C ₈₂ as a spinâ€active filling of SWCNTs: ESR study of magnetic and photophysical properties. Physica Status Solidi (B): Basic Research, 2008, 245, 2042-2046.	1.5	8

#	Article	IF	CITATIONS
235	Preparation and electronic properties of potassium doped graphite single crystals. Physica Status Solidi (B): Basic Research, 2008, 245, 2072-2076.	1.5	8
236	Boron doped carbon nanotubes via ceramic catalysts. Physica Status Solidi - Rapid Research Letters, 2009, 3, 193-195.	2.4	8
237	An X-ray absorption approach to mixed and metallicity-sorted single-walled carbon nanotubes. Journal of Materials Science, 2010, 45, 5318-5322.	3.7	8
238	Mechanism study of floating catalyst CVD synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2708-2712.	1.5	8
239	Exchange interactions of spin-active metallofullerenes in solid-state carbon networks. Physical Review B, 2010, 81, .	3.2	8
240	Computing C1 <l>s</l> X-ray Absorption for Single-Walled Carbon Nanotubes with Distinct Electronic Type. Materials Express, 2011, 1, 225-230.	0.5	8
241	<i>In situ</i> Raman spectroscopy studies on timeâ€dependent inner tube growth in ferroceneâ€filled large diameter singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2394-2400.	1.5	8
242	Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 18316-18322.	3.1	8
243	Semiconducting response in singleâ€walled carbon nanotubes filled with cadmium chloride. Physica Status Solidi (B): Basic Research, 2016, 253, 2433-2439.	1.5	8
244	Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter. Physica Status Solidi (B): Basic Research, 2017, 254, 1700178.	1.5	8
245	Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 20-26.	2.1	8
246	Ultralong Spin Lifetime in Light Alkali Atom Doped Graphene. ACS Nano, 2020, 14, 7492-7501.	14.6	8
247	Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Research, 2022, 15, 1709-1714.	10.4	8
248	Electronic structure of confined carbyne from joint wavelength-dependent resonant Raman spectroscopy and density functional theory investigations. Carbon, 2022, 189, 276-283.	10.3	8
249	Single phase superconductivity at 112 K in (BiPb)CaSrCuO. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1219-1220.	1.2	7
250	The dielectric function of dimerised C59N. Synthetic Metals, 1997, 86, 2313-2314.	3.9	7
251	Final-state interference effects in valence band photoemission of(C59N)2. Physical Review B, 2002, 66, .	3.2	7
252	A photoemission study of the nature of the metallic state in single wall carbon nanotube bundles at low potassium doping. Synthetic Metals, 2005, 153, 333-336.	3.9	7

#	Article	IF	CITATIONS
253	Modification of SiC based nanorods via a hydrogenated annealing process. Synthetic Metals, 2005, 153, 349-352.	3.9	7
254	Study on hydrogen uptake of functionalized carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3226-3229.	1.5	7
255	Charge distribution of potassium intercalated Dy3N@C80 observed with core-level and valence-band photoemission. Physica Status Solidi (B): Basic Research, 2006, 243, 3004-3007.	1.5	7
256	Growth of carbon nanotubes from wet chemistry and thin film multilayer catalysts. Physica Status Solidi (B): Basic Research, 2006, 243, 3054-3057.	1.5	7
257	Anisotropy in the X-ray absorption of vertically aligned single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3978-3981.	1.5	7
258	Lossâ€spectroscopy on sparse arrays of aligned singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2284-2287.	1.5	7
259	Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles. Physica Status Solidi (B): Basic Research, 2008, 245, 1919-1922.	1.5	7
260	Carbon nanotube synthesis via ceramic catalysts. Physica Status Solidi (B): Basic Research, 2009, 246, 2486-2489.	1.5	7
261	On the purification of CVD grown boron doped singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2504-2507.	1.5	7
262	Disentanglement of the unoccupied electronic structure in metallic and semiconductingC60peapods. Physical Review B, 2011, 83, .	3.2	7
263	Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core. Scientific Reports, 2013, 3, 1840.	3.3	7
264	Challenging the nature of low-energy plasmon excitations in CaC 6 using electron energy-loss spectroscopy. Europhysics Letters, 2013, 102, 17001.	2.0	7
265	Nondispersive Raman lines in the D-band region for ferrocene functionalized carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2457-2460.	1.5	7
266	An optically detected magnetic resonance spectrometer with tunable laser excitation and wavelength resolved infrared detection. Review of Scientific Instruments, 2017, 88, 013902.	1.3	7
267	Towards controllable inner chirality in double-walled carbon nanotubes. Applied Physics Letters, 2019, 115, .	3.3	7
268	Tip-Enhanced Stokes–Anti-Stokes Scattering from Carbyne. Nano Letters, 2022, , .	9.1	7
269	Fullerene Single Crystals: Structure and Electronic Properties. Fullerenes, Nanotubes, and Carbon Nanostructures, 1996, 4, 227-255.	0.6	6
270	The loss function and optical conductivity of potassium intercalated bundles of single wall carbon nanotubes. Synthetic Metals, 1999, 103, 2515-2516.	3.9	6

#	Article	IF	CITATIONS
271	Defect Free Inner Tubes in DWCNTs. AIP Conference Proceedings, 2003, , .	0.4	6
272	Electronic structure and optical properties of boron doped single-wall carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.4	6
273	Charge Transfer and Bonding in Endohedral Fullerenes from High-Energy Spectroscopy. Structure and Bonding, 0, , 201-229.	1.0	6
274	Electronic surface reconstruction and correlation in the fcc and dimer phases ofRbC60. Physical Review B, 2007, 75, .	3.2	6
275	Growth mechanisms of innerâ€shell tubes in doubleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4097-4101.	1.5	6
276	Electronic and optical properties of alkali metal doped carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2693-2698.	1.5	6
277	Tuning Carbon Nanotubes Through Poor Metal Addition to Iron Catalysts in CVD. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 37-44.	2.1	6
278	Environmental stability of ferrocene filled in purely metallic single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2599-2604.	1.5	6
279	Toward Synthesis and Characterization of Unconventional C ₆₆ and C ₆₈ Fullerenes inside Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 30260-30268.	3.1	6
280	Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel acetylacetonate. Physica Status Solidi (B): Basic Research, 2015, 252, 2546-2550.	1.5	6
281	Isotopic Labelling of Confined Carbyne. Angewandte Chemie - International Edition, 2021, 60, 9897-9901.	13.8	6
282	Oxygen doping of tetragonal YBa 2 (Cu,Ga) 3 O x superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 967-968.	1.2	5
283	Electronic structure studies of intercalated, hetero and endohedral fullerenes. Carbon, 1998, 36, 625-631.	10.3	5
284	Determination of the filling factor of C60 peapods by electron energy-loss spectroscopy in transmission. Synthetic Metals, 2003, 135-136, 715-716.	3.9	5
285	Low energy quasiparticle dispersion of graphite by angleâ€resolved photoemission spectroscopy. Physica Status Solidi (B): Basic Research, 2007, 244, 4129-4133.	1.5	5
286	Transport, magnetic and vibrational properties of chemically exfoliated few-layer graphene. Physica Status Solidi (B): Basic Research, 2015, 252, 2438-2443.	1.5	5
287	Controlled Isotope Arrangement in ¹³ C Enriched Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 29520-29524.	3.1	5
288	Exclusive Substitutional Nitrogen Doping on Graphene Decoupled from an Insulating Substrate. Journal of Physical Chemistry C, 2020, 124, 22150-22157.	3.1	5

#	Article	IF	CITATIONS
289	Doping and temperature induced phase transitions in C60. Synthetic Metals, 1993, 56, 3110-3118.	3.9	4
290	The spectroscopic investigation of the optical and electronic properties of SWCNT. AIP Conference Proceedings, 2000, , .	0.4	4
291	Production and characterization of MWBNNT and B-doped SWCNT. AIP Conference Proceedings, 2003, , \cdot	0.4	4
292	Synthesis of single wall carbon nanotubes with defined13C content. Physica Status Solidi (B): Basic Research, 2006, 243, 3050-3053.	1.5	4
293	Synthesis of Heterogenous Multiâ€Walled Carbon Nanotubes in a Carbon Arc in Water. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 207-213.	2.1	4
294	On the Formation of Single-Walled Carbon Nanotubes in Pulsed-Laser-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2008, 20, 128-134.	6.7	4
295	Oxide catalysts for carbon nanotube and few layer graphene formation. Physica Status Solidi (B): Basic Research, 2009, 246, 2530-2533.	1.5	4
296	Adaptation of a commercial Raman spectrometer for multiline and broadband laser operation. Physica Status Solidi (B): Basic Research, 2011, 248, 2581-2584.	1.5	4
297	Deâ€intercalation process from <i>Stage</i> â€1 to <i>Stage</i> â€2 graphite intercalation compounds revisited. Physica Status Solidi (B): Basic Research, 2012, 249, 2640-2643.	1.5	4
298	The origin of nondispersive Raman lines in the D-band region for ferrocene@HiPco SWCNTs transformed at high temperatures. Physica Status Solidi (B): Basic Research, 2015, 252, 2530-2535.	1.5	4
299	Improved Alkali Intercalation of Carbonaceous Materials in Ammonia Solution. Physica Status Solidi (B): Basic Research, 2019, 256, 1900324.	1.5	4
300	Toward a Predominant Substitutional Bonding Environment in B-Doped Single-Walled Carbon Nanotubes. ACS Omega, 2019, 4, 1941-1946.	3.5	4
301	Wall―and Hybridisation‧elective Synthesis of Nitrogenâ€Ðoped Doubleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 10276-10280.	13.8	4
302	Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO ₂ exposure under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9753-9759.	10.3	4
303	Deciphering the Intense Postgap Absorptions of Monolayer Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 7783-7789.	14.6	4
304	Photothermal synthesis of confined carbyne. Carbon, 2021, 182, 348-353.	10.3	4
305	Endohedral Functionalization of Metallicity-Sorted Single-Walled Carbon Nanotubes. Proceedings (mdpi), 2020, 56, .	0.2	4
306	Electronic structure studies of pressure-polymerized C60. Synthetic Metals, 1999, 103, 2454-2455.	3.9	3

#	Article	IF	CITATIONS
307	Electronic structure and optical properties of single wall carbon nanotubes and C[sub 60] peapods. AIP Conference Proceedings, 2001, , .	0.4	3
308	Phases for the azafulleridesRbxC59N. Physical Review B, 2001, 63, .	3.2	3
309	Metal-to-insulator transition in thin-film polymericAC60. New Journal of Physics, 2009, 11, 023035.	2.9	3
310	A combined photoemission and <i>ab initio</i> study of the electronic structure of (6,4)/(6,5) enriched single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2875-2879.	1.5	3
311	Spectroscopic study of the diameter distribution of Bâ€doped singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2469-2472.	1.5	3
312	Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content. Batteries and Supercaps, 2021, 4, 1304-1309.	4.7	3
313	The Nanospace Inside Single-Wall Carbon Nanotubes. , 2004, , 171-184.		3
314	Tuning of photoluminescence intensity and Fermi level position of individual single-walled carbon nanotubes by molecule confinement. Carbon, 2022, 186, 423-430.	10.3	3
315	Electronic Properties of Multiwall Boron Nitride Nanotubes. AIP Conference Proceedings, 2003, , .	0.4	2
316	Infra-red and Raman spectroscopic study on the thermal stability and high temperature transformation of hydroazafullerene C59HN. Carbon, 2006, 44, 1420-1424.	10.3	2
317	Raman response from doubleâ€wall carbon nanotubes based on metallicity selected host SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2880-2883.	1.5	2
318	Orbital and spin magnetic moments of ferrocene encapsulated in metallicity sorted singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2424-2427.	1.5	2
319	Length scales in orientational order of vertically aligned single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2631-2634.	1.5	2
320	Synthesis of Nitrogen Doped Single Walled Carbon Nanotubes With Caffeine. Physica Status Solidi (B): Basic Research, 2017, 254, 1700364.	1.5	2
321	Wall―and Hybridisation‧elective Synthesis of Nitrogenâ€Doped Doubleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2019, 131, 10382-10386.	2.0	2
322	Vibrational Spectroscopy of Fullerites and Fullerides. , 1994, , 287-309.		2
323	Experimental Studies of the Electronic Structure of Fullerenes. Physics and Chemistry of Materials With Low-dimensional Structures, 2000, , 135-173.	1.0	2
324	Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation. Small Methods, 2022, 6, .	8.6	2

THOMAS	Рісн	I F R
	1.011	LLIC

#	Article	IF	CITATIONS
325	Phonon anomalies and gap anisotropy in substituted ceramics and oriented thin films of 123 superconductors. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1775-1776.	1.2	1
326	Electronic structure studies of single-wall carbon nanotubes using electron energy-loss spectroscopy in transmission. , 1998, , .		1
327	Electronic structure of carbon nanotubes. , 2000, , 205-218.		1
328	Fermi surface mapping of Bi-2212 using high resolution angle-scanned photoemission. , 2000, , 697-711.		1
329	Optical absorption study of factors influencing the carbon nanotube nucleation process. AIP Conference Proceedings, 2001, , .	0.4	1
330	Optimization of purification and selective burning of single-wall carbon nanotubes. AIP Conference Proceedings, 2002, , .	0.4	1
331	Electronic structure of intercalated single-wall carbon nanotubes. AIP Conference Proceedings, 2002, , .	0.4	1
332	Extraordinarily high reduction states of fullerenes produced by intercalation with divalent metals. Synthetic Metals, 2003, 135-136, 791-793.	3.9	1
333	Covalent interaction in Ba-doped single-wall carbon nanotubes. AIP Conference Proceedings, 2004, , .	0.4	1
334	Studies on the Preparation and Characterisation of Carbon Nanostructures. Solid State Phenomena, 2004, 99-100, 269-272.	0.3	1
335	Bulk synthesis and characteristic properties of boron nitride nanostructures: nanocapsules and nanotubes. AIP Conference Proceedings, 2004, , .	0.4	1
336	A Photoemission Study of Potassium-Doped Single Wall Carbon Nanotubes. AIP Conference Proceedings, 2004, , .	0.4	1
337	A photoemission study of the metallic ground state of potassium-doped C60 peapods. Physica Status Solidi (B): Basic Research, 2006, 243, 3013-3016.	1.5	1
338	Unifying catalyst size dependencies in floating catalyst and supported catalyst carbon nanotube synthesis. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1386-1390.	1.8	1
339	Unraveling Electron Chirality in Graphene. Physics Magazine, 2011, 4, .	0.1	1
340	High resolution Xâ€ray absorption on metallicity selected C ₆₀ peapods, singleâ€, and double walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2544-2547.	1.5	1
341	Arrayed Arrangement of13C Isotopes During the Growth of Inner Single-Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700217.	1.5	1
342	Measurement of Optical Excitations in Low-Dimensional Materials by Using a Monochromated Electron Source. Microscopy and Microanalysis, 2018, 24, 1574-1575.	0.4	1

#	Article	IF	CITATIONS
343	In-situ UV/VIS and Infrared Spectroscopy of Potassium-Doped C60. Springer Series in Solid-state Sciences, 1993, , 497-500.	0.3	1
344	The electronic structure of doped fullerenes studied using high energy spectroscopy. , 1998, , .		0
345	Electronic structure studies of carbon nanostructures using electron energy-loss spectroscopy in transmission. , 1999, , .		0
346	The electronic structure of mono- and dimetallofullerenes by photoemission spectroscopy. , 1999, , .		0
347	The effects of dimensionality on the Ï \in -plasmon-dispersion in multi-wall carbon nanotubes. , 1999, , .		0
348	The characterization of SWNT containing soot by optical spectroscopy. , 1999, , .		0
349	The phases of quenched fullerenes RbC60. Synthetic Metals, 2001, 121, 1107-1108.	3.9	0
350	Electronic structure studies of carbon nanotubes: Aligned, doped and filled. AIP Conference Proceedings, 2001, , .	0.4	0
351	Quantum oscillations for the spectral moments of Raman spectra from SWCNT. AIP Conference Proceedings, 2001, , .	0.4	0
352	Variation of the Growth Time of Carbon Nanotubes in Different Gases. AIP Conference Proceedings, 2002, , .	0.4	0
353	Resonance Raman Properties of Pristine and Intercalated HiPCO SWNTs. AIP Conference Proceedings, 2002, , .	0.4	0
354	Optical properties of intercalated single-wall carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.4	0
355	Thermally Induced Templated Synthesis for the Formation of SiC Nanotubes and more. AIP Conference Proceedings, 2004, , .	0.4	0
356	Reshaping of Peapods via Temperature and Laser Irradiation. AIP Conference Proceedings, 2005, , .	0.4	0
357	Metal Oxides and Low Temperature SWCNT Synthesis via Laser Evaporation. AIP Conference Proceedings, 2005, , .	0.4	0
358	Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
359	Insight to the valence band electronic structure of metallicity selected single wall carbon nanotubes from a photoemission viewpoint. Physica Status Solidi (B): Basic Research, 2010, 247, 2779-2783.	1.5	0
360	Plasma dynamics in graphite and SWNT probed by inelastic electron and X-ray scattering. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2789-2792.	0.8	0

#	Article	IF	CITATIONS
361	Structural properties of mirrored carbon spirals as revealed by scanning electron microscopy and micro-Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2013, 250, 2737-2740.	1.5	0
362	Microscale magnetic compasses. Journal of Applied Physics, 2017, 122, .	2.5	0
363	Nanoscale Vibrational Spectroscopy of Graphene by Large-q EELS. Microscopy and Microanalysis, 2019, 25, 612-613.	0.4	0
364	Improved Laserâ€Based Photoluminescence on Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2019, 256, 1900235.	1.5	0
365	Improved Laserâ€Based Photoluminescence on Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2019, 256, 1970045.	1.5	0
366	Isotopic Labelling of Confined Carbyne. Angewandte Chemie, 2021, 133, 9985-9989.	2.0	0
367	<i>In situ</i> laser annealing as pathway for the metal free synthesis of tailored nanographenes. Nanoscale Advances, 2021, 3, 703-709.	4.6	Ο
368	The Electronic Structure of Carbon-Based Nanostructrures: Fullerenes, Onions and Tubes. , 2000, , 227-242.		0
369	High Resolution Fermi Surface Mapping of Pb-Doped Bi-2212. , 2001, , 43-50.		Ο
370	Exploring the Concave Nanospace of Fullerenic Material. , 2003, , 109-119.		0