
Hani M El-Kaderi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1806485/publications.pdf Version: 2024-02-01

HANI M FI-KADERI

#	Article	IF	CITATIONS
1	Iron-based sulfur and nitrogen dual doped porous carbon as durable electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 6078-6088.	3.8	21
2	Surface Modification of Partially Reduced Graphene Oxide for Advanced Electrode Material in Rechargeable Sodium Batteries. Energy & Fuels, 2022, 36, 4967-4977.	2.5	6
3	Heteroatom-Doped Porous Carbons as Effective Adsorbers for Toxic Industrial Gasses. ACS Applied Materials & Interfaces, 2022, 14, 33173-33180.	4.0	8
4	Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15083-15091.	4.0	67
5	Electrocatalytic Cathodes Based on Cobalt Nanoparticles Supported on Nitrogen-Doped Porous Carbon by Strong Electrostatic Adsorption for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 13038-13047.	2.5	6
6	Heterogeneous catalysis by ultra-small bimetallic nanoparticles surpassing homogeneous catalysis for carbon–carbon bond forming reactions. Nanoscale, 2020, 12, 19191-19202.	2.8	33
7	Multifunctional Electrocatalytic Cathodes Derived from Metal–Organic Frameworks for Advanced Lithium‧ulfur Batteries. Chemistry - A European Journal, 2020, 26, 13896-13903.	1.7	19
8	Iron Phosphide Doped, Porous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 2537-2546.	2.5	18
9	Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23520-23526.	4.0	73
10	Incorporation of benzimidazole linked polymers into Matrimid to yield mixed matrix membranes with enhanced CO2/N2 selectivity. Journal of Membrane Science, 2018, 554, 90-96.	4.1	20
11	Nitrogen-Rich Porous Polymers for Carbon Dioxide and Iodine Sequestration for Environmental Remediation. ACS Applied Materials & amp; Interfaces, 2018, 10, 16049-16058.	4.0	134
12	Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO ₂ capture applications. International Journal of Energy Research, 2018, 42, 2686-2700.	2.2	94
13	Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Advances, 2018, 8, 12300-12309.	1.7	38
14	Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors. International Journal of Hydrogen Energy, 2018, 43, 18549-18558.	3.8	71
15	Pyrene Bearing Azo-Functionalized Porous Nanofibers for CO ₂ Separation and Toxic Metal Cation Sensing. ACS Omega, 2018, 3, 15510-15518.	1.6	17
16	Rapid Formation of Metal–Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2017, 9, 9688-9698.	4.0	91
17	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
18	Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO ₂ Capture and Separation Performance. ACS Applied Materials & Interfaces, 2017, 9, 35802-35810.	4.0	61

Hani M El-Kaderi

#	Article	IF	CITATIONS
19	Benzothiazole- and benzoxazole-linked porous polymers for carbon dioxide storage and separation. Journal of Materials Chemistry A, 2017, 5, 258-265.	5.2	87
20	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. ACS Applied Materials & Interfaces, 2016, 8, 14648-14655.	4.0	76
21	A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO ₂ sorbents. Journal of Materials Chemistry A, 2016, 4, 14693-14702.	5.2	90
22	Systematic Postsynthetic Modification of Nanoporous Organic Frameworks for Enhanced CO ₂ Capture from Flue Gas and Landfill Gas. Journal of Physical Chemistry C, 2016, 120, 2592-2599.	1.5	69
23	From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation. ACS Applied Materials & Interfaces, 2016, 8, 8491-8501.	4.0	39
24	Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers. Chemistry of Materials, 2015, 27, 1349-1358.	3.2	220
25	Highly porous and photoluminescent pyrene-quinoxaline-derived benzimidazole-linked polymers. Journal of Materials Chemistry A, 2015, 3, 3006-3010.	5.2	16
26	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chemical Communications, 2015, 51, 13393-13396.	2.2	71
27	Effect of Acid-Catalyzed Formation Rates of Benzimidazole-Linked Polymers on Porosity and Selective CO ₂ Capture from Gas Mixtures. Environmental Science & Technology, 2015, 49, 4715-4723.	4.6	41
28	Synthesis of a Highly Porous Bis(imino)pyridine-Linked Polymer and Its Postsynthetic Modification with Inorganic Fluorinated Ions for Selective CO ₂ Capture. Journal of Physical Chemistry C, 2015, 119, 8174-8182.	1.5	32
29	Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin. Industrial & Engineering Chemistry Research, 2015, 54, 10731-10739.	1.8	107
30	Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. Journal of Materials Chemistry A, 2015, 3, 20586-20594.	5.2	84
31	Highly Selective CO ₂ Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules, 2014, 47, 8328-8334.	2.2	141
32	Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture. Chemistry of Materials, 2014, 26, 1385-1392.	3.2	276
33	New insights into carbon dioxide interactions with benzimidazole-linked polymers. Chemical Communications, 2014, 50, 3571-3574.	2.2	51
34	Application of pyrene-derived benzimidazole-linked polymers to CO ₂ separation under pressure and vacuum swing adsorption settings. Journal of Materials Chemistry A, 2014, 2, 12492-12500.	5.2	85
35	A 2D Mesoporous Imineâ€Linked Covalent Organic Framework for High Pressure Gas Storage Applications. Chemistry - A European Journal, 2013, 19, 3324-3328.	1.7	380
36	Impact of post-synthesis modification of nanoporous organic frameworks on small gas uptake and selective CO2 capture. Journal of Materials Chemistry A, 2013, 1, 10259.	5.2	134

Hani M El-Kaderi

#	Article	IF	CITATIONS
37	Impact of tailored chemical and textural properties on the performance of nanoporous borazine-linked polymers in small gas uptake and selective binding. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	9
38	Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm, 2013, 15, 1524-1527.	1.3	131
39	High CO ₂ uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chemical Communications, 2012, 48, 1141-1143.	2.2	217
40	Targeted synthesis of a porous borazine-linked covalent organic framework. Chemical Communications, 2012, 48, 8823.	2.2	200
41	Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake. Chemistry of Materials, 2012, 24, 1511-1517.	3.2	433
42	Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. Journal of Materials Chemistry, 2012, 22, 13524.	6.7	95
43	Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation. Journal of Materials Chemistry, 2012, 22, 25409.	6.7	138
44	Synthesis of highly porous borazine-linked polymers and their application to H2, CO2, and CH4 storage. Polymer Chemistry, 2011, 2, 2775.	1.9	77
45	Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO ₂ Capture and H ₂ Storage. Chemistry of Materials, 2011, 23, 1650-1653.	3.2	390
46	Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. Journal of Materials Chemistry, 2011, 21, 10629.	6.7	57
47	Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications. Research on Chemical Intermediates, 2011, 37, 747-757.	1.3	38
48	Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. Journal of Materials Chemistry, 2009, 19, 7625.	6.7	277
49	Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 12914-12915.	6.6	682
50	Designed Synthesis of 3D Covalent Organic Frameworks. Science, 2007, 316, 268-272.	6.0	2,024
51	Complexes of the heavier alkaline earth metals containing β-diketiminato and iodide ligand sets. Polyhedron, 2006, 25, 224-234.	1.0	26
52	Synthesis, structure and properties of monomeric strontium and barium complexes containing terminal Î-2-3,5-di-tert-butylpyrazolato ligands. Polyhedron, 2005, 24, 645-653.	1.0	20
53	Synthesis, Structure, and Ligand Redistribution Equilibria of Mixed Ligand Complexes of the Heavier Group 2 Elements Containing Pyrazolato andβ-Diketiminato Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 2081-2088.	1.0	21
54	Synthesis, structure and properties of volatile lanthanide complexes containing amidinate ligands: application for Er2O3 thin film growth by atomic layer deposition. Journal of Materials Chemistry, 2005, 15, 4224.	6.7	64

#	Article	IF	CITATIONS
55	Sandwich Complexes of the Heavier Alkaline Earth Metals Containing η5-β-Diketiminato Ligand Sets. Organometallics, 2004, 23, 4995-5002.	1.1	31
56	Factors that Influence ï€- versus η2-Coordination of β-Diketiminato Ligands in Magnesium Complexes. Organometallics, 2004, 23, 3488-3495.	1.1	48
57	Synthesis, structure, and properties of magnesium complexes containing cyclopentadienyl and amidinate ligand sets. Journal of Organometallic Chemistry, 2003, 682, 224-232.	0.8	68