Chang Ha Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1806307/publications.pdf

Version: 2024-02-01

38742 71685 9,470 318 50 76 citations g-index h-index papers 319 319 319 8579 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Equilibrium adsorption and kinetic study of CO2 and N2 on synthesized carbon Black–Zeolite composite. Separation and Purification Technology, 2022, 280, 119917.	7.9	14
2	Sensitivity analysis and artificial neural network-based optimization for low-carbon H2 production via a sorption-enhanced steam methane reforming (SESMR) process integrated with separation process. International Journal of Hydrogen Energy, 2022, 47, 820-847.	7.1	21
3	Adsorption equilibria and kinetics of CO2, CH4, CO, N2, and H2 on KOH-treated activated carbon pellets up to 1000ÂkPa. Chemical Engineering Journal, 2022, 431, 133396.	12.7	16
4	Dynamic modeling and machine learning of commercial-scale simulated moving bed chromatography for application to multi-component normal paraffin separation. Separation and Purification Technology, 2022, 288, 120597.	7.9	4
5	Dynamic CO2 sorption on MgO-based sorbent in the presence of CO and H2O at elevated pressures. Chemical Engineering Journal, 2022, 433, 134607.	12.7	10
6	Prediction of CO2 capture capability of 0.5ÂMW MEA demo plant using three different deep learning pipelines. Fuel, 2022, 315, 123229.	6.4	11
7	Performance and sensitivity analysis of packed-column absorption process using multi-amine solvents for post-combustion CO2 capture. Fuel, 2022, 314, 122768.	6.4	20
8	Exploring the synergistic role of crystal facet and phase at hetero-interface towards light-switchable chemoselective oxidation over bismuth-based catalysts. Journal of Colloid and Interface Science, 2022, 617, 651-662.	9.4	3
9	Uranyl peroxide ((UO2)(O2)Â-4H2O; UO4) precipitation for uranium sequestering: formation and physicochemical characterization. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 2495-2501.	1.5	3
10	Overview of Carbon Monoxide Adsorption Performance of Pristine and Modified Adsorbents. Journal of Chemical & Engineering Data, 2022, 67, 1599-1616.	1.9	15
11	Pre-combustion CO2 capture using amine-based absorption process for blue H2 production from steam methane reformer. Energy Conversion and Management, 2022, 262, 115632.	9.2	19
12	Efficient removal of 2-chloroethyl ethyl sulfide in solution under solar light by magnesium oxide-decorated polymeric carbon nitride photocatalysts and mechanism investigation. Environmental Advances, 2022, 9, 100255.	4.8	4
13	Facile and Accurate Calculation of the Density of Amino Acid Salt Solutions: A Simple and General Correlation vs Artificial Neural Networks. Energy & Samp; Fuels, 2022, 36, 7661-7675.	5.1	6
14	Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture. Chemical Engineering Journal, 2021, 408, 127299.	12.7	48
15	Revisiting magnesium oxide to boost hydrogen production via water-gas shift reaction: Mechanistic study to economic evaluation. Applied Catalysis B: Environmental, 2021, 284, 119701.	20.2	20
16	Performance and dynamic behavior of sorption-enhanced water-gas shift reaction in a fluidized bed reactor for H2 production and CO2 capture. Chemical Engineering Journal, 2021, 410, 127414.	12.7	17
17	Estaneâ€Assisted Preparation of Submicron βâ€Form HMX Particles through Antisolvent Crystallization. Propellants, Explosives, Pyrotechnics, 2021, 46, 944-949.	1.6	1
18	Separation of propane and propylene by desorbent swing adsorption using zeolite 13X and carbon dioxide. Chemical Engineering Journal, 2021, 410, 128276.	12.7	13

#	Article	IF	CITATIONS
19	Reaction of drilled-cores from the Janggi basin with CO2-saturated brine from subcritical to supercritical condition of CO2: Implications on sequestration of dissolved CO2. Journal of Natural Gas Science and Engineering, 2021, 88, 103804.	4.4	6
20	Deep reinforcement learning optimization framework for a power generation plant considering performance and environmental issues. Journal of Cleaner Production, 2021, 291, 125915.	9.3	18
21	Artificial neural network modelling for solubility of carbon dioxide in various aqueous solutions from pure water to brine. Journal of CO2 Utilization, 2021, 47, 101500.	6.8	12
22	High-purity hydrogen production via a water-gas-shift reaction in a palladium-copper catalytic membrane reactor integrated with pressure swing adsorption. Chemical Engineering Journal, 2021, 411, 128473.	12.7	49
23	Actor-critic reinforcement learning to estimate the optimal operating conditions of the hydrocracking process. Computers and Chemical Engineering, 2021, 149, 107280.	3.8	17
24	Densities and Viscosities of Binary and Ternary Solutions of Triethylenetetramine, 2-Amino-2-methyl-1-propanol, and Water for Carbon Dioxide Capture. Journal of Chemical & Engineering Data, 2021, 66, 2942-2958.	1.9	7
25	Sorption equilibria, kinetics, and temperature-swing adsorption performance of polyethyleneimine-impregnated silica for post-combustion carbon dioxide capture. Separation and Purification Technology, 2021, 266, 118582.	7.9	11
26	Enhanced oxygen mobility of nonreducible MgO-supported Cu catalyst by defect engineering for improving the water-gas shift reaction. Journal of Catalysis, 2021, 400, 195-211.	6.2	15
27	Feasibility study on the volume reduction of radioactive concrete wastes using thermomechanical and chemical sequential process. Journal of Environmental Chemical Engineering, 2021, 9, 105742.	6.7	5
28	Sensitivity analysis of mass transfer and enhancement factor correlations for the absorption of CO2 in a Sulzer DX packed column using 4-diethylamino-2-butanol (DEAB) solution. Separation and Purification Technology, 2021, 268, 118696.	7.9	4
29	Performance and Cost Analysis of Natural Gas Combined Cycle Plants with Chemical Looping Combustion. ACS Omega, 2021, 6, 21043-21058.	3.5	7
30	Role of Ultra-micropores in CO ₂ Adsorption on Highly Durable Resin-Based Activated Carbon Beads by Potassium Hydroxide Activation. Industrial & Engineering Chemistry Research, 2021, 60, 14547-14563.	3.7	8
31	Efficient solar light facilitated photo-oxidative detoxification of gaseous 2-chloroethyl ethyl sulfide on ZrO2-doped g-C3N4 under dry and humid air. Chemosphere, 2021, 280, 130685.	8.2	18
32	Dynamic model and performance of an integrated sorption-enhanced steam methane reforming process with separators for the simultaneous blue H2 production and CO2 capture. Chemical Engineering Journal, 2021, 423, 130044.	12.7	16
33	RISM-assisted analysis of role of alkali metal hydroxides in the solvation of cellulose in alkali/urea aqueous solutions. Cellulose, 2021, 28, 11247-11259.	4.9	0
34	Sensitivity analysis of CO2 capture process in cyclic fluidized-bed with regeneration of solid sorbent. Chemical Engineering Journal, 2020, 379, 122291.	12.7	21
35	Effect of surfactants on CO2 solubility and reaction in CO2-brine-clay mineral systems during CO2-enhanced fossil fuel recovery. Chemical Engineering Journal, 2020, 382, 123014.	12.7	15
36	Alkyl-functionalization of (3-Aminopropyl)triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption. Chemical Engineering Journal, 2020, 382, 122834.	12.7	27

#	Article	IF	CITATIONS
37	Software Platform for Computation Fluid Dynamics Simulation of Mixing and Crystallization in a Stirred Vessel. Crystal Growth and Design, 2020, 20, 1172-1185.	3.0	6
38	Prediction of CO2 solubility in multicomponent electrolyte solutions up to 709†bar: Analogical bridge between hydrophobic solvation and adsorption model. Chemical Engineering Journal, 2020, 389, 123459.	12.7	5
39	Effects of the mobile phase on the chromatographic separation of l-lysine and 5-aminovaleric acid. Microchemical Journal, 2020, 152, 104369.	4.5	6
40	Correlation between fixation of high-concentration CO2 and glutamate accumulation in Sulfurovum lithotrophicum 42BKTT. Journal of Industrial and Engineering Chemistry, 2020, 92, 56-61.	5.8	1
41	Adsorption equilibria and kinetics of silica gel for N2O, O2, N2, and CO2. Separation and Purification Technology, 2020, 251, 117326.	7.9	17
42	Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model. Cellulose, 2020, 27, 6767-6775.	4.9	6
43	Unusual morphology transformation and basicity of magnesium oxide controlled by ageing conditions and its carbon dioxide adsorption. Journal of CO2 Utilization, 2020, 41, 101273.	6.8	11
44	CO2 adsorption by conventional and nanosized zeolites. , 2020, , 193-228.		15
45	Kinetics of CO2 fixation by Sulfurovum lithotrophicum 42BKTT: Medium optimization and tolerance of CO2 toxicity. Journal of Environmental Chemical Engineering, 2020, 8, 104428.	6.7	0
46	Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process. Energy, 2020, 200, 117586.	8.8	27
47	Nitrification stability and membrane performance under different water permeation intensity of an osmotic membrane bioreactor. International Biodeterioration and Biodegradation, 2020, 150, 104962.	3.9	4
48	Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas. Applied Energy, 2020, 273, 115263.	10.1	46
49	Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes. Energy, 2020, 206, 118164.	8.8	46
50	Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine. Journal of Cleaner Production, 2020, 270, 122310.	9.3	96
51	Experimental and Simulation Study on CO ₂ Adsorption Dynamics of a Zeolite 13X Column during Blowdown and Pressurization: Implications of Scaleup on CO ₂ Capture Vacuum Swing Adsorption Cycle. Industrial & Engineering Chemistry Research, 2020, 59, 6053-6064.	3.7	17
52	CFD simulation of a packed bed industrial absorber with interbed liquid distributors. International Journal of Greenhouse Gas Control, 2020, 95, 102983.	4.6	18
53	Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures. Chemical Engineering Journal, 2020, 396, 125215.	12.7	19
54	Synthesis of Nano-Flakes Ag•ZnO•Activated Carbon Composite from Rice Husk as A Photocatalyst under Solar Light. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 264-279.	1.1	13

#	Article	IF	CITATIONS
55	Adsorption equilibria and kinetics of propane and propylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2019, 274, 286-298.	4.4	25
56	Hydrodesulfurization via heat exchanger network synthesis for ultra-low-sulfur diesel. Korean Journal of Chemical Engineering, 2019, 36, 1226-1234.	2.7	2
57	Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution. Fuel, 2019, 256, 115877.	6.4	26
58	Adsorption Equilibria of Water Vapor on Surface-Modified Activated Carbons and Alumina. Journal of Chemical & Engineering Data, 2019, 64, 4834-4843.	1.9	10
59	Synthesis of mesoporous MgO–CeO2 composites with enhanced CO2 capture rate via controlled combustion. Microporous and Mesoporous Materials, 2019, 288, 109587.	4.4	25
60	Performance evaluation and carbon assessment of IGCC power plant with coal quality. Energy, 2019, 188, 116063.	8.8	25
61	Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer. Applied Energy, 2019, 255, 113809.	10.1	56
62	Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant. Energy, 2019, 171, 910-927.	8.8	35
63	Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions. Journal of Hazardous Materials, 2019, 368, 550-559.	12.4	32
64	Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. Journal of Water Process Engineering, 2019, 28, 169-180.	5.6	66
65	Design of highly efficient adsorbents for removal of gaseous methyl iodide using tertiary amine-impregnated activated carbon: Integrated experimental and first-principles approach. Chemical Engineering Journal, 2019, 373, 1003-1011.	12.7	27
66	Equilibrium and kinetics of nitrous oxide, oxygen and nitrogen adsorption on activated carbon and carbon molecular sieve. Separation and Purification Technology, 2019, 223, 63-80.	7.9	43
67	Palladium-copper membrane modules for hydrogen separation at elevated temperature and pressure. Korean Journal of Chemical Engineering, 2019, 36, 563-572.	2.7	8
68	Dynamic modeling of a dual fluidized-bed system with the circulation of dry sorbent for CO2 capture. Applied Energy, 2019, 241, 640-651.	10.1	29
69	Efficient conversion of extra-heavy oil into distillates using tetralin/activated carbon in a continuous reactor at elevated temperatures. Journal of Analytical and Applied Pyrolysis, 2019, 140, 245-254.	5.5	6
70	Direct formation of hierarchically porous MgO-based sorbent bead for enhanced CO2 capture at intermediate temperatures. Chemical Engineering Journal, 2019, 371, 64-77.	12.7	47
71	Thermodynamic modelling of CO2 absorption into aqueous solutions of 2-diethylaminoethanol, piperazine, and blended diethylaminoethanol with piperazine. Fluid Phase Equilibria, 2019, 493, 26-35.	2.5	15
72	Continuous bubble reactor using carbon dioxide and its mixtures for ballast water treatment. Water Research, 2019, 154, 316-326.	11.3	7

#	Article	IF	CITATIONS
73	Equilibrium Adsorption Study of CO ₂ and N ₂ on Synthesized Zeolites 13X, 4A, 5A, and Beta. Journal of Chemical & Engineering Data, 2019, 64, 5648-5664.	1.9	47
74	Scale-Up of a Semi-Batch Draft Tube Baffled Crystallizer for Hexanitrohexaazaisowurtzitane Based on Experiments and Computational Fluid Dynamics Simulation. Crystal Growth and Design, 2019, 19, 658-671.	3.0	13
75	Simulation and analysis of vacuum pressure swing adsorption using the differential quadrature method. Computers and Chemical Engineering, 2019, 121, 483-496.	3.8	15
76	Adsorption equilibria and kinetics of CO2, CO, and N2 on carbon molecular sieve. Separation and Purification Technology, 2019, 212, 952-964.	7.9	44
77	Adsorption characteristics of benzene on resin-based activated carbon under humid conditions. Journal of Industrial and Engineering Chemistry, 2019, 71, 242-249.	5.8	35
78	Fabrication and kinetic study of spherical MgO agglomerates via water-in-oil method for pre-combustion CO2 capture. Chemical Engineering Journal, 2019, 359, 285-297.	12.7	34
79	Dissolution and reaction in a CO2-brine-clay mineral particle system under geological CO2 sequestration from subcritical to supercritical conditions. Chemical Engineering Journal, 2018, 347, 1-11.	12.7	24
80	Preparation of graphene hollow spheres from vacuum residue of ultra-heavy oil as an effective oxygen electrode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 4040-4047.	10.3	18
81	Upgrading of petroleum vacuum residue using a hydrogen-donor solvent with acid-treated carbon. Energy Conversion and Management, 2018, 161, 234-242.	9.2	29
82	CFD Simulation of a Drowningâ€out Crystallizer for Hexanitrohexaazaisowurtzitane. Chemical Engineering and Technology, 2018, 41, 1226-1235.	1.5	4
83	Facile synthesis of hierarchically porous MgO sorbent doped with CaCO3 for fast CO2 capture in rapid intermediate temperature swing sorption. Chemical Engineering Journal, 2018, 334, 1605-1613.	12.7	52
84	An experimental and modeling study of CO2 solubility in a 2-amino-2-methyl-1-propanol (AMP)†+†N-methyl-2-pyrrolidone (NMP) solution. Chemical Engineering Science, 2018, 175, 365-376.	3.8	35
85	CO 2 fixation stability by Sulfurovum lithotrophicum 42BKT T depending on pH and ionic strength conditions. Journal of Industrial and Engineering Chemistry, 2018, 57, 72-76.	5.8	5
86	Performance analysis of an eight-layered bed PSA process for H2 recovery from IGCC with pre-combustion carbon capture. Energy Conversion and Management, 2018, 156, 202-214.	9.2	49
87	Preparation of rod-like MgO by simple precipitation method for CO ₂ capture at ambient temperature. Vietnam Journal of Chemistry, 2018, 56, 197-202.	0.8	15
88	Sorption Equilibria and Kinetics of CO ₂ , N ₂ , and H ₂ O on KOH-Treated Activated Carbon. Industrial & Engineering Chemistry Research, 2018, 57, 17218-17225.	3.7	15
89	Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. Process Biochemistry, 2018, 73, 132-141.	3.7	41
90	Thermodynamic modelling using e-UNIQUAC model for CO2 absorption by novel amine solutions: 1-Dimethylamino- 2-propanol (1DMA2P), 3-dimethylamino-1-propanol (3DMA1P) and 4-diethylamino-2-butanol (DEAB). Fluid Phase Equilibria, 2018, 473, 50-69.	2.5	14

#	Article	IF	Citations
91	Adsorption Equilibria of Water Vapor on an Alumina/Zeolite 13X Composite and Silica Gel. Journal of Chemical &	1.9	32
92	Role of Anhydride in the Ketonization of Carboxylic Acid: Kinetic Study on Dimerization of Hexanoic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 872-880.	3.7	10
93	Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration. Energy, 2017, 125, 459-469.	8.8	13
94	Separation of Carbon Dioxide and Methane Mixture by an Adsorbent/Membrane Hybrid System Using Zeolite 5A Pellets and FAU-Zeolite Membrane. Industrial & Engineering Chemistry Research, 2017, 56, 2582-2591.	3.7	13
95	Evaluation of the energy efficiency of the shell coal gasification process by coal type. Energy Conversion and Management, 2017, 143, 123-136.	9.2	56
96	Kinetic effects of methane on binary mixture separation on methyltriethoxysilane templated silica membranes. Separation and Purification Technology, 2017, 182, 151-159.	7.9	9
97	Sorption capacity and stability of mesoporous magnesium oxide in post-combustion CO2 capture. Materials Chemistry and Physics, 2017, 198, 154-161.	4.0	40
98	Performance, economic and exergy analyses of carbon capture processes for a 300ÂMW class integrated gasification combined cycle power plant. Energy, 2017, 134, 731-742.	8.8	38
99	Morphology control of mesoporous Cu 2 O by reductants and its photocatalytic activity. Ceramics International, 2017, 43, 8222-8229.	4.8	18
100	Analysis of thermal parameter effects on an adsorption bed for purification and bulk separation. Separation and Purification Technology, 2017, 181, 95-106.	7.9	27
101	Liquefaction of oil palm empty fruit bunch using sub- and supercritical tetralin, n-dodecane, and their mixture. Fuel, 2017, 208, 184-192.	6.4	18
102	Extraction-based recovery of RDX from obsolete Composition B. Journal of Industrial and Engineering Chemistry, 2017, 56, 394-398.	5.8	5
103	Co-processing of heavy oil with wood biomass using supercritical m-xylene and n-dodecane solvents. Korean Journal of Chemical Engineering, 2017, 34, 1961-1969.	2.7	9
104	Advanced Operating Strategies to Extend the Applications of Simulated Moving Bed Chromatography. Chemical Engineering and Technology, 2017, 40, 2163-2178.	1.5	42
105	Salt-Composition-Controlled Precipitation of Triple-Salt-Promoted MgO with Enhanced CO2 Sorption Rate and Working Capacity. Energy & Energ	5.1	27
106	Adsorptive cyclic purification process for CO ₂ mixtures captured from coal power plants. AICHE Journal, 2017, 63, 1051-1063.	3.6	25
107	Performance Analysis on an Entrainedâ€Flow Gasifier by Coal Moisture. Chemical Engineering and Technology, 2017, 40, 2257-2265.	1.5	4
108	Immobilized culture of Sulfurovum lithotrophicum 42BKT T in polyurethane foam cubes. Journal of Industrial and Engineering Chemistry, 2016, 39, 176-180.	5.8	4

#	Article	IF	Citations
109	High-performance strategy of a simulated moving bed chromatography by simultaneous control of product and feed streams under maximum allowable pressure drop. Journal of Chromatography A, 2016, 1471, 102-117.	3.7	19
110	Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite. Journal of Nanoscience and Nanotechnology, 2016, 16, 1715-1719.	0.9	8
111	A parameter study for co-processing of petroleum vacuum residue and oil palm empty fruit bunch fiber using supercritical tetralin and decalin. Fuel, 2016, 181, 895-904.	6.4	15
112	Combined operation of outlet streams swing with partial-feed in a simulated moving bed. Korean Journal of Chemical Engineering, 2016, 33, 1059-1069.	2.7	7
113	Effect of different physical conditions on fouling control in in-situ chemical cleaning in place (CIP) for flat sheet membranes fouled by secondary effluents. Chemical Engineering Journal, 2016, 302, 128-136.	12.7	16
114	Adsorption behaviors of CO2 and CH4 on zeolites JSR and NanJSR using the GCMC simulations. Adsorption, 2016, 22, 1065-1073.	3.0	7
115	H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process. Applied Energy, 2016, 183, 760-774.	10.1	94
116	Integration of forward osmosis process and a continuous airlift nitrifying bioreactor containing PVA/alginate-immobilized cells. Chemical Engineering Journal, 2016, 306, 1212-1222.	12.7	33
117	The Effect of K and Acidity of NiW-Loaded HY Zeolite Catalyst for Selective Ring Opening of 1-Methylnaphthalene. Journal of Nanoscience and Nanotechnology, 2016, 16, 4335-4341.	0.9	5
118	The effects of physical cleaning and chemical backwashing on foulant formation in a microfiltration membrane intended for the reuse of wastewater. Desalination and Water Treatment, 2016, 57, 26586-26594.	1.0	0
119	Fuel characteristics of molasses-impregnated low-rank coal produced in a top-spray fluidized-bed reactor. Drying Technology, 2016, 34, 1095-1106.	3.1	3
120	Double sodium salt-promoted mesoporous MgO sorbent with high CO2 sorption capacity at intermediate temperatures under dry and wet conditions. Chemical Engineering Journal, 2016, 291, 161-173.	12.7	76
121	Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO 2 , CO, N 2 , CH 4 , Ar and H 2. Chemical Engineering Journal, 2016, 292, 348-365.	12.7	132
122	Adsorption Equilibria of Water Vapor on Zeolite 3A, Zeolite 13X, and Dealuminated Y Zeolite. Journal of Chemical &	1.9	85
123	Removal of gaseous sulfur and phosphorus compounds by carbon-coated porous magnesium oxide composites. Chemical Engineering Journal, 2016, 283, 1234-1243.	12.7	40
124	Biofixation of a high-concentration of carbon dioxide using a deep-sea bacterium: Sulfurovum lithotrophicum 42BKT ^T . RSC Advances, 2015, 5, 7151-7159.	3.6	21
125	Ring Opening of Naphthenic Molecules Over Metal Containing Mesoporous Y Zeolite Catalyst. Journal of Nanoscience and Nanotechnology, 2015, 15, 5334-5337.	0.9	7
126	Application of the extended DLVO approach to mechanistically study the algal flocculation. Journal of Industrial and Engineering Chemistry, 2015, 30, 289-294.	5.8	14

#	Article	IF	Citations
127	Adsorption breakthrough dynamics of zeolites for ethylene recovery from fluid catalytic cracking fuel-gas. Korean Journal of Chemical Engineering, 2015, 32, 808-815.	2.7	7
128	Mesoporous magnesium oxide and its composites: Preparation, characterization, and removal of 2-chloroethyl ethyl sulfide. Chemical Engineering Journal, 2015, 269, 82-93.	12.7	69
129	Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance. Journal of Chromatography A, 2015, 1403, 104-117.	3.7	6
130	New momentum and energy balance equations considering kinetic energy effect for mathematical modelling of a fixed bed adsorption column. Adsorption, 2015, 21, 353-363.	3.0	17
131	Thermochemical Decomposition of Microcrystalline Cellulose Using Sub- and Supercritical Tetralin and Decalin with Fe ₃ O ₄ . Industrial & Engineering Chemistry Research, 2015, 54, 5184-5194.	3.7	10
132	Preparation of nano-magnetite impregnated mesocellular foam composite with a Cu ligand for His-tagged enzyme immobilization. Chemical Engineering Journal, 2015, 274, 1-8.	12.7	22
133	Parametric Study for Upgrading Petroleum Vacuum Residue Using Supercriticalm-Xylene andn-Dodecane Solvents. Energy & Samp; Fuels, 2015, 29, 2319-2328.	5.1	11
134	Adsorption dynamics of hydrogen and deuterium in a carbon molecular sieve bed at 77K. Separation and Purification Technology, 2015, 146, 168-175.	7.9	13
135	Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Applied Catalysis A: General, 2015, 506, 288-293.	4.3	35
136	Adsorption kinetics of CO2, CO, N2 and CH4 on zeolite LiX pellet and activated carbon granule. Adsorption, 2015, 21, 419-432.	3.0	32
137	Synthesis of submicrometer-sized Cu O with morphological evolution in a one-pot reaction. Materials Letters, 2015, 159, 297-300.	2.6	5
138	Dityrosine-based substrates for the selective and sensitive assay of thermolysin. Journal of Industrial and Engineering Chemistry, 2015, 21, 248-253.	5.8	3
139	Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule. Chemical Engineering Journal, 2015, 262, 683-690.	12.7	120
140	Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces. Chemical Engineering Journal, 2014, 255, 705-715.	12.7	81
141	Synthesis and characterization of ethosomal contrast agents containing iodine for computed tomography (CT) imaging applications. Journal of Liposome Research, 2014, 24, 124-129.	3.3	8
142	Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77ÂK: SBA-15 and zeolites 5A, Y, 10X. International Journal of Hydrogen Energy, 2014, 39, 4437-4446.	7.1	30
143	Effect of bed void volume on pressure vacuum swing adsorption for air separation. Korean Journal of Chemical Engineering, 2014, 31, 132-141.	2.7	23
144	Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0ÂMPa. Adsorption, 2014, 20, 631-647.	3.0	121

#	Article	IF	Citations
145	Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier. Energy, 2014, 64, 58-68.	8.8	78
146	Three-port operation in three-zone simulated moving bed chromatography. Journal of Chromatography A, 2014, 1340, 79-89.	3.7	9
147	Pressure Swing Adsorption Process for Recovering H ₂ from the Effluent Gas of a Melting Incinerator. Industrial & Damp; Engineering Chemistry Research, 2014, 53, 15447-15455.	3.7	25
148	Drying Efficiency of Indonesian Lignite in a Batch-Circulating Fluidized Bed Dryer. Drying Technology, 2014, 32, 268-278.	3.1	27
149	Sulfur removal from municipal gas using magnesium oxides and a magnesium oxide/silicon dioxide composite. Microporous and Mesoporous Materials, 2014, 197, 299-307.	4.4	30
150	Controlling the Physical Properties of Magnesium Oxide Using a Calcination Method in Aerogel Synthesis: Its Application to Enhanced Sorption of a Sulfur Compound. Industrial & Engineering Chemistry Research, 2014, 53, 13228-13235.	3.7	21
151	Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures. Chemical Engineering Journal, 2014, 258, 254-264.	12.7	110
152	Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process. Applied Energy, 2014, 131, 425-440.	10.1	83
153	Gold Nanoparticles-Based Colorimetric Assay for Cathepsin B Activity and the Efficiency of Its Inhibitors. Analytical Chemistry, 2014, 86, 3825-3833.	6.5	40
154	Direct thermochemical liquefaction of microcrystalline cellulose by sub- and supercritical organic solvents. Journal of Supercritical Fluids, 2014, 95, 175-186.	3.2	19
155	Experimental Investigations of Effects of Centrifugal Compressor Impeller Design on Noise Characteristics. , 2014, , .		1
156	Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells. Bulletin of the Korean Chemical Society, 2014, 35, 3475-3481.	1.9	7
157	Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions. Chemical Engineering Journal, 2013, 230, 93-101.	12.7	67
158	Self-rotating photocatalytic system for aqueous Cr(VI) reduction on TiO2 nanotube/Ti mesh substrate. Chemical Engineering Journal, 2013, 229, 66-71.	12.7	40
159	Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography. Journal of Chromatography A, 2013, 1311, 79-89.	3.7	17
160	The effect of re-aggregated floc by additional coagulant on membrane. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 802-807.	5.3	11
161	New strategy for selective and sensitive assay of cathepsin B using a dityrosine-based material. Analytical Biochemistry, 2013, 435, 166-173.	2.4	8
162	Hydrocracking of petroleum vacuum residue with activated carbon and metal additives in a supercritical m-xylene solvent. Fuel, 2013, 103, 553-561.	6.4	24

#	Article	IF	CITATIONS
163	Improved Performance of a Simulated Moving Bed Process by a Recycling Method in the Partial-Discard Strategy. Industrial & Engineering Chemistry Research, 2012, 51, 9835-9849.	3.7	21
164	A dityrosine-based substrate for a protease assay: Application for the selective assessment of papain and chymopapain activity. Analytica Chimica Acta, 2012, 723, 101-107.	5.4	19
165	Adsorptive Desulfurization of Natural Gas Using Lithium-Modified Mesoporous Silica. Industrial & Samp; Engineering Chemistry Research, 2012, 51, 14489-14495.	3.7	22
166	Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporousÂcarbon catalysts: Effect of structure and framework-configuration. International Journal of Hydrogen Energy, 2012, 37, 12187-12197.	7.1	36
167	H2 PSA purifier for CO removal from hydrogen mixtures. International Journal of Hydrogen Energy, 2012, 37, 18175-18186.	7.1	66
168	5-hydroxymethylfurfural as a potential monomer for the preparation of carbon aerogel. Materials Chemistry and Physics, 2012, 136, 837-844.	4.0	9
169	Steam regeneration of acetone and toluene in activated carbon and dealuminated Y-zeolite beds. Korean Journal of Chemical Engineering, 2012, 29, 1246-1252.	2.7	3
170	The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt–Re bimetallic catalysts. Catalysis Today, 2012, 185, 73-80.	4.4	52
171	Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chemical Engineering Science, 2012, 68, 413-423.	3.8	124
172	Hydrocracking of vacuum residue with activated carbon in supercritical hydrocarbon solvents. Fuel, 2012, 94, 556-562.	6.4	31
173	Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts. International Journal of Hydrogen Energy, 2012, 37, 8310-8317.	7.1	40
174	Synthesis of PEG hydrogel with dityrosine for multi-functionality and pH-dependent fluorescence. Journal of Industrial and Engineering Chemistry, 2012, 18, 611-616.	5.8	4
175	Synthesis of a fluorescent and star-shaped 4-arm PEG with different functional groups at its ends. Journal of Industrial and Engineering Chemistry, 2012, 18, 1186-1190.	5.8	6
176	Adsorption Dynamics of Activated Carbon and Carbon Molecular Sieve Beds for Ethylene Recovery. Korean Chemical Engineering Research, 2012, 50, 527-534.	0.2	0
177	Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. Green Chemistry, 2011, 13, 1718.	9.0	71
178	New Selection Criterion for a Base Polar Liquid in the Lifshitz–van der Waals/Lewis Acid–Base Approach. Journal of Physical Chemistry C, 2011, 115, 12458-12463.	3.1	12
179	Heparin-coated superparamagnetic nanoparticle-mediated adeno-associated virus delivery for enhancing cellular transduction. International Journal of Pharmaceutics, 2011, 421, 397-404.	5.2	34
180	Improved performance of simulated moving bed process using columnâ€modified feed. AICHE Journal, 2011, 57, 2036-2053.	3.6	14

#	Article	IF	CITATIONS
181	Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions. Chemical Engineering Journal, 2011, 171, 45-53.	12.7	79
182	Determination of reliable Lewis acid–base surface tension components of a solid in LW–AB approach. Journal of Industrial and Engineering Chemistry, 2011, 17, 125-129.	5.8	16
183	Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed. Separation and Purification Technology, 2011, 77, 312-324.	7.9	64
184	Photoelectrochemical hydrogen production with concentrated natural seawater produced by membrane process. Solar Energy, 2011, 85, 2256-2263.	6.1	22
185	10.2478/s11814-009-0217-4., 2011, 26, 1379.		0
186	10.2478/s11814-009-0326-0., 2011, 27, 278.		1
187	10.2478/s11814-009-0274-8., 2011, 26, 1748.		0
188	Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode materials by using a supercritical water method in a batch reactor. Electrochimica Acta, 2010, 55, 3015-3021.	5.2	46
189	Denitrogenation of raw diesel fuel by lithium-modified mesoporous silica. Chemical Engineering Journal, 2010, 162, 649-655.	12.7	68
190	Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory. Journal of Hazardous Materials, 2010, 179, 983-988.	12.4	24
191	Calculation of phase equilibrium for water+carbon dioxide system using nonrandom lattice fluid equation of state. Korean Journal of Chemical Engineering, 2010, 27, 278-283.	2.7	11
192	Incorporation of nano-sized magnetite particles into mesoporous materials via –COOH groups. Materials Chemistry and Physics, 2010, 122, 397-401.	4.0	20
193	Adsorbent/membrane hybrid (AMH) system for hydrogen separation: Synergy effect between zeolite 5A and silica membrane. Journal of Membrane Science, 2010, 356, 58-69.	8.2	10
194	Synthesis of Zn2SnO4 anode material by using supercritical water in a batch reactor. Journal of Supercritical Fluids, 2010, 55, 252-258.	3.2	27
195	Kinetic studies of vapor-phase hydrogenolysis of butyl butyrate to butanol over Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 2010, 387, 100-106.	4.3	16
196	Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles. Biosensors and Bioelectronics, 2010, 26, 730-735.	10.1	32
197	Adsorption and Desorption of CO ₂ on Korean Coal under Subcritical to Supercritical Conditions. Journal of Physical Chemistry B, 2010, 114, 4854-4861.	2.6	47
198	Synthesis of magnetic/silicananoparticles with a core of magnetic clusters and their application for the immobilization of His-tagged enzymes. Journal of Materials Chemistry, 2010, 20, 1511-1515.	6.7	54

#	Article	IF	Citations
199	Corrosion performance of steel in composite concrete system admixed with chloride and various alkaline nitrites. Corrosion Engineering Science and Technology, 2009, 44, 408-415.	1.4	23
200	Comparison of chemical and enzymatic emulsion polymerization of styrene. Journal of Applied Polymer Science, 2009, 112, 2935-2941.	2.6	4
201	Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean Journal of Chemical Engineering, 2009, 26, 127-130.	2.7	31
202	Decomposition of 2-chlorophenol by supercritical water oxidation with zirconium corrosion. Korean Journal of Chemical Engineering, 2009, 26, 398-402.	2.7	3
203	Adsorption of 2,4-dichlorophenol on metal-nitrate modified activated carbon. Korean Journal of Chemical Engineering, 2009, 26, 1379-1382.	2.7	8
204	Surface modified granular activated carbon for enhancement of nickel adsorption from aqueous solution. Korean Journal of Chemical Engineering, 2009, 26, 1748-1753.	2.7	5
205	Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 62-66.	1.8	152
206	Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil. Journal of Hazardous Materials, 2009, 172, 491-493.	12.4	12
207	Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Lab on A Chip, 2009, 9, 1957.	6.0	22
208	Evaluation of a silica-coated magnetic nanoparticle for the immobilization of a His-tagged lipase. Biocatalysis and Biotransformation, 2009, 27, 246-253.	2.0	23
209	Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2009, 12, 142-147.	0.1	0
210	Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science, 2008, 318, 45-55.	8.2	26
211	Effects of flow-rate ratio on startup and cyclic steady-state behaviors of simulated moving bed under linear conditions. Separation and Purification Technology, 2008, 62, 148-159.	7.9	10
212	Optimization of synthesizing leucine-binding nano-sized magnetite by a two-step transformation. Korean Journal of Chemical Engineering, 2008, 25, 144-148.	2.7	8
213	Optimized production of lignolytic manganese peroxidase in immobilized cultures of Phanerochaete chrysosporium. Biotechnology and Bioprocess Engineering, 2008, 13, 108-114.	2.6	1
214	Manganese(III) acetateâ€catalyzed synthesis of polyguaiacol. Journal of Polymer Science Part A, 2008, 46, 6009-6015.	2.3	10
215	Adsorptive Desulfurization and Denitrogenation of Refinery Fuels Using Mesoporous Silica Adsorbents. ChemSusChem, 2008, 1, 307-309.	6.8	107
216	Heatâ€exchange pressure swing adsorption process for hydrogen separation. AICHE Journal, 2008, 54, 2054-2064.	3.6	59

#	Article	IF	Citations
217	Kinetics of gold nanoparticle aggregation: Experiments and modeling. Journal of Colloid and Interface Science, 2008, 318, 238-243.	9.4	206
218	A convenient preparation of dityrosine via Mn(III)-mediated oxidation of tyrosine. Process Biochemistry, 2008, 43, 999-1003.	3.7	11
219	Oxidation of 17î±-ethinylestradiol with Mn(III) and product identification. Journal of Hazardous Materials, 2008, 155, 334-341.	12.4	18
220	Product identification of guaiacol oxidation catalyzed by manganese peroxidase. Journal of Industrial and Engineering Chemistry, 2008, 14, 487-492.	5.8	40
221	Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil. Colloids and Surfaces B: Biointerfaces, 2008, 62, 91-96.	5.0	13
222	Corrosion phenomena of alloys by subcritical and supercritical water oxidation of 2-chlorophenol. Journal of Supercritical Fluids, 2008, 44, 370-378.	3.2	40
223	Manganese peroxidase-catalyzed oxidative degradation of vanillylacetone. Chemosphere, 2008, 72, 572-577.	8.2	2
224	Immobilization of a His-tagged lipase on a silica-coated magnetic nanoparticle coupled with metal affinity ligands. Journal of Biotechnology, 2008, 136, S334.	3.8	1
225	Synthesis of Nanosized Ce ³⁺ ,Eu ³⁺ -Codoped YAG Phosphor in a Continuous Supercritical Water System. Industrial & Supercritical Chemistry Research, 2008, 47, 5994-6000.	3.7	50
226	Selective Aggregation Mechanism of Unmodified Gold Nanoparticles in Detection of Single Nucleotide Polymorphism. Journal of Physical Chemistry C, 2008, 112, 8629-8633.	3.1	56
227	Surface Chemical Analysis of Corroded Alloys in Subcritical and Supercritical Water Oxidation of 2-Chlorophenol in Continuous Anticorrosive Reactor System. Industrial & Engineering Chemistry Research, 2008, 47, 2265-2272.	3.7	18
228	Sorption Equilibrium and Thermal Regeneration of Acetone and Toluene Vapors on an Activated Carbon. Industrial & Engineering Chemistry Research, 2007, 46, 4584-4594.	3.7	45
229	Parametric Study of the Three-Bed Pressureâ "Vacuum Swing Adsorption Process for High Purity O2Generation from Ambient Air. Industrial & Engineering Chemistry Research, 2007, 46, 3720-3728.	3.7	19
230	Hydrogen separation of methyltriethoxysilane templating silica membrane. AICHE Journal, 2007, 53, 3125-3136.	3.6	15
231	Synthesis of nano-sized YAG:Eu3+ phosphor in continuous supercritical water system. Journal of Supercritical Fluids, 2007, 40, 389-396.	3.2	61
232	Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 278-285.	4.7	50
233	Surface modified Pt/C as a methanol tolerant oxygen reduction catalyst for direct methanol fuel cells. Electrochemistry Communications, 2007, 9, 2629-2632.	4.7	16
234	Ternary adsorption equilibrium of H2/CH4/C2H4 onto activated carbon. Separation and Purification Technology, 2007, 55, 335-342.	7.9	22

#	Article	IF	Citations
235	Comparison of YAG: Eu phosphors synthesized by supercritical water in batch and continuous reactors. Korean Journal of Chemical Engineering, 2007, 24, 877-880.	2.7	14
236	DESULFURIZATION OF FUELS BY SELECTIVE ADSORPTION FOR ULTRA-CLEAN FUELS., 2007,,.		0
237	Adsorption Equilibria of O2, N2, and Ar on Carbon Molecular Sieve and Zeolites 10X, 13X, and LiX. Journal of Chemical & Description Data, 2006, 51, 1001-1008.	1.9	50
238	Effects of Feed Concentration on the Startup and Performance Behaviors of Simulated Moving Bed Chromatography. Industrial & Engineering Chemistry Research, 2006, 45, 777-790.	3.7	17
239	Surface Chemical Analysis on the Corrosion of Alloys in the Supercritical Water Oxidation of Halogenated Hydrocarbon. Industrial & Engineering Chemistry Research, 2006, 45, 3412-3419.	3.7	22
240	Kinetic Separation of Landfill Gas by a Two-Bed Pressure Swing Adsorption Process Packed with Carbon Molecular Sieve:Â Nonisothermal Operation. Industrial & Engineering Chemistry Research, 2006, 45, 5050-5058.	3.7	91
241	Mechanistic Investigation of the Isomerization of 5-Vinyl-2-norbornene. Journal of Organic Chemistry, 2006, 71, 911-914.	3.2	6
242	Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273, 75-83.	4.7	69
243	Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography. Journal of Chromatography A, 2006, 1122, 161-173.	3.7	71
244	Highly selective facilitated transport membranes for isoprene/n-pentane separation. Journal of Membrane Science, 2006, 279, 403-409.	8.2	6
245	Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/î±-alumina composite membrane. Journal of Membrane Science, 2006, 285, 343-352.	8.2	16
246	Comparison of YAG: Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor. Korean Journal of Chemical Engineering, 2006, 23, 842-846.	2.7	16
247	Effect of NaOH on the decomposition of halogenated hydrocarbon by supercritical water oxidation. Korean Journal of Chemical Engineering, 2006, 23, 385-390.	2.7	10
248	Adsorptive denitrogenation of light gas oil by silica-zirconia cogel. AICHE Journal, 2006, 52, 510-521.	3.6	59
249	Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Carbon, 2005, 43, 95-107.	10.3	167
250	Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst. Carbon, 2005, 43, 1512-1516.	10.3	67
251	Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve. Chemical Engineering Science, 2005, 60, 869-882.	3.8	87
252	Three-bed PVSA process for high-purity O2 generation from ambient air. AICHE Journal, 2005, 51, 2988-2999.	3.6	41

#	Article	IF	Citations
253	An anti-corrosive reactor for the decomposition of halogenated hydrocarbons with supercritical water oxidation. Journal of Supercritical Fluids, 2005, 36, 59-69.	3.2	44
254	Adsorption Dynamics of Air on Zeolite $13\mathrm{X}$ and CMS Beds for Separation and Purification. Adsorption, 2005, $11,415-420$.	3.0	22
255	Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation. Korean Journal of Chemical Engineering, 2005, 22, 882-888.	2.7	12
256	The Effect of Adding Organic Solvents on the Phase Behavior in Water/Surfactant/scCO ₂ Microemulsion in Supercritical State. Key Engineering Materials, 2005, 277-279, 886-892.	0.4	1
257	Adsorption Characteristics of Toluene andpâ€Xylene in a Reversedâ€Phase C18Column for Simulated Moving Bed Chromatography. Separation Science and Technology, 2005, 40, 2183-2204.	2.5	7
258	NaFeEDTA Decomposition and Hematite Nanoparticle Formation in Supercritical Water Oxidation. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 6615-6621.	3.7	18
259	Adsorption Equilibria of Water Vapor on Activated Carbon and DAY Zeolite. Journal of Chemical & Samp; Engineering Data, 2005, 50, 951-955.	1.9	23
260	Parametric Study of Pressure Swing Adsorption Process To Purify Oxygen Using Carbon Molecular Sieve. Industrial & Engineering Chemistry Research, 2005, 44, 7208-7217.	3.7	27
261	Effect of a Fluorinated Sodium Bis(2-ethylhexyl) Sulfosuccinate (Aerosol-OT, AOT) Analogue Surfactant on the Interfacial Tension of CO2+ Water and CO2+ Ni-Plating Solution in Near- and Supercritical CO2. Journal of Chemical & Engineering Data, 2005, 50, 299-308.	1.9	33
262	Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets. Adsorption, 2004, 10, 111-128.	3.0	65
263	Comparison of the adsorption dynamics of air on zeolite 5A and carbon molecular sieve beds. Korean Journal of Chemical Engineering, 2004, 21, 1183-1192.	2.7	19
264	Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2, CO2/H2 and CH4/H2 systems. Korean Journal of Chemical Engineering, 2004, 21, 477-487.	2.7	20
265	Effect of heat transfer on the transient dynamics of temperature swing adsorption process. Korean Journal of Chemical Engineering, 2004, 21, 703-711.	2.7	29
266	Effects of adsorbate properties on adsorption mechanism in a carbon molecular sieve. Korean Journal of Chemical Engineering, 2004, 21, 712-720.	2.7	35
267	Adsorption and regeneration dynamic characteristics of methane and hydrogen binary system. Korean Journal of Chemical Engineering, 2004, 21, 821-828.	2.7	11
268	Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chemical Engineering Science, 2004, 59, 2727-2743.	3.8	77
269	Methylene chloride oxidation on oxidative carbon-supported chromium oxide catalyst. Applied Catalysis A: General, 2004, 266, 163-172.	4.3	26
270	Enhancing the organic dye adsorption on porous xerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240, 157-164.	4.7	88

#	Article	IF	Citations
271	Decomposition of Ethylenediaminetetraacetic Acid by Supercritical Water Oxidation. Industrial & Engineering Chemistry Research, 2004, 43, 3223-3227.	3.7	29
272	Effects of Heat-Transfer Coefficients on Thermal Dynamics in a Near-Adiabatic Fixed Bed. Separation Science and Technology, 2004, 39, 2627-2654.	2.5	7
273	Comparison of Adsorption Dynamics in Kinetic and Equilibrium Beds in Hydrogen Ternary System. Separation Science and Technology, 2004, 39, 2951-2976.	2.5	6
274	EXPERIMENT AND SIMULATION OF PRESSURE SWING ADSORPTION PROCESS FOR HYDROGEN SEPARATION. , 2004, , .		0
275	ASES CRYSTALLIZATION OF BIODEGRADABLE POLYMERS USING SUPERCRITICAL CO ₂ AS AN ANTI-SOLVENT., 2004, , .		0
276	Catalytic decomposition of methylene chloride on oxidative carbon supported metal oxide catalysts. Reaction Kinetics and Catalysis Letters, 2003, 80, 123-129.	0.6	6
277	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 80, 139-144.	0.6	2
278	Catalytic decomposition of methylene chloride on oxidative carbon supported metal oxide catalysts. Reaction Kinetics and Catalysis Letters, 2003, 80, 131-138.	0.6	5
279	Adsorption dynamics of water in layered bed for air-drying tsa process. AICHE Journal, 2003, 49, 1601-1609.	3.6	49
280	Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Applied Catalysis A: General, 2003, 251, 143-156.	4.3	281
281	Adsorption Equilibria of Water Vapor on Alumina, Zeolite 13X, and a Zeolite X/Activated Carbon Composite. Journal of Chemical & Engineering Data, 2003, 48, 137-141.	1.9	112
282	Evaluation of PAN–TiO2Composite Adsorbent for Removal of Pb(II) Ion in Aqueous Solution. Separation Science and Technology, 2003, 38, 695-713.	2.5	28
283	ADSORBER DYNAMICS OF BINARY AND TERNARY HYDROGEN MIXTURE IN ACTIVATED CARBON AND ZEOLITE 5A BEDS., 2003,,.		0
284	PRESSURE-DEPENDENT MODELS FOR ADSORPTION KINETICS ON A CMS. , 2003, , .		1
285	ADSORPTION CHARACTERISTICS OF NITROGEN COMPOUNDS ON SILICA SURFACE., 2003,,.		0
286	High Purity Oxygen Generation PSA Process by Using Carbon Molecular Sieve., 2003,,.		0
287	ADSORPTION AND DESORPTION CHARACTERISTICS OF AIR ON ZEOLITE 5A, 10X, AND 13X FIXED BEDS. Separation Science and Technology, 2002, 37, 3465-3490.	2.5	18
288	Adsorption Isotherms of Toluene and Gasoline Vapors on DAY Zeolite. Journal of Chemical & Engineering Data, 2002, 47, 363-366.	1.9	26

#	Article	lF	CITATIONS
289	Adsorption Equilibria of Toluene and Gasoline Vapors on Activated Carbon. Journal of Chemical & Engineering Data, 2002, 47, 1222-1225.	1.9	36
290	Effects of Nonisobaric and Isobaric Steps on O2 Pressure Swing Adsorption for an Aerator. Industrial & Engineering Chemistry Research, 2002, 41, 4383-4392.	3.7	23
291	Adsorption Equilibria of CO2on Zeolite 13X and Zeolite X/Activated Carbon Composite. Journal of Chemical & Che	1.9	231
292	Diffusion Mechanism of N2 and CH4 in Pelletized Zeolite 4A, 5A and CaX Journal of Chemical Engineering of Japan, 2002, 35, 334-345.	0.6	23
293	Preparation of L-PLA submicron particles by a continuous supercritical antisolvent precipitation process. Korean Journal of Chemical Engineering, 2002, 19, 139-145.	2.7	34
294	Supercritical Carbon Dioxide debinding in metal injection molding (MIM) process. Korean Journal of Chemical Engineering, 2002, 19, 986-991.	2.7	8
295	Oxygen Transfer Characteristics in a Pilot Scale Surface Aeration Vessel with Simcar Aerator. Environmental Technology (United Kingdom), 2001, 22, 57-68.	2.2	3
296	Air Separation by a Small-Scale Two-Bed Medical O2Pressure Swing Adsorption. Industrial & Samp; Engineering Chemistry Research, 2001, 40, 3647-3658.	3.7	53
297	Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed:Â Binary, Ternary, and Five-Component Mixtures. Industrial & Engineering Chemistry Research, 2001, 40, 868-878.	3.7	82
298	Effects of Feed Composition of Coke Oven Gas on a Layered Bed H2 PSA Process. Adsorption, 2001, 7, 339-356.	3.0	51
299	ADSORPTION AND STEAM REGENERATION OF n-HEXANE, MEK, AND TOLUENE ON ACTIVATED CARBON FIBER. Separation Science and Technology, 2001, 36, 263-281.	2.5	18
300	Studies on the Overall Oxygen Transfer Rate and Mixing Time in Pilot-Scale Surface Aeration Vessel. Environmental Technology (United Kingdom), 2001, 22, 1055-1068.	2.2	2
301	THERMAL EFFECTS ON THE BREAKTHROUGH CURVE OF A HYDROGEN TERNARY SYSTEM AT A FIXED BED. Separation Science and Technology, 2001, 36, 2121-2145.	2.5	18
302	Vaporâ^Liquid Equilibria for Isobutane + Pentafluoroethane (HFC-125) at 293.15 to 313.15 K and + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at 303.15 to 323.15 K. Journal of Chemical & Engineering Data, 2000, 45, 760-763.	1.9	26
303	Adsorption and Desorption of n-Hexane, Methyl Ethyl Ketone, and Toluene on an Activated Carbon Fiber from Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2000, 39, 2510-2518.	3.7	59
304	COMPARISON OF ADSORPTION DYNAMICS OF A TERNARY HYDROGEN MIXTURE IN EQUILIBRIUM AND KINETIC SEPARATION BEDS. , 2000, , .		2
305	Backfill Cycle of a Layered Bed H2 PSA Process. Adsorption, 1999, 5, 419-433.	3.0	43
306	Effects of carbon-to-zeolite ratio on layered bed H2 PSA for coke oven gas. AICHE Journal, 1999, 45, 535-545.	3.6	72

#	Article	IF	CITATIONS
307	Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas. AICHE Journal, 1998, 44, 1325-1334.	3.6	135
308	Effects of pressure drop in a PSA process. Korean Journal of Chemical Engineering, 1998, 15, 211-216.	2.7	37
309	Hydrogen separation by two-bed PSA process. Studies in Surface Science and Catalysis, 1997, 105, 1883-1890.	1.5	2
310	Evaluation of an Activated Carbon Felt Passive Sampler in Monitoring Organic Vapors Industrial Health, 1997, 35, 404-414.	1.0	9
311	Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A. Industrial & Description Process Using Zeolite 5A. Industrial	3.7	102
312	Adsorption characteristics of toluene and naphthalene on silica gel under the subcritical and supercritical conditions using chromatographic techniques Journal of Chemical Engineering of Japan, 1996, 29, 683-694.	0.6	13
313	Experimental and theoretical study on H2/CO2 separation by a five-step one-column psa process. Korean Journal of Chemical Engineering, 1995, 12, 503-511.	2.7	20
314	Bulk separation of hydrogen mixtures by a one-column PSA process. Separation and Purification Technology, 1995, 5, 239-249.	0.7	40
315	Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene. Journal of Chemical &	1.9	23
316	Vapor-liquid equilibria in the system of toluene/aniline, aniline/naphthalene, and naphthalene/quinoline. Journal of Chemical & Description (2018) and 1992, 37, 179-183.	1.9	6
317	Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin. Journal of Chemical & mp; Engineering Data, 1992, 37, 183-186.	1.9	22
318	Supercritical-fluid solubilization of catalyst precursors: The solubility and phase behavior of molybdenum hexacarbonyl in supercritical carbon dioxide and application to the direct liquefaction of coal. Journal of Supercritical Fluids, 1992, 5, 60-71.	3.2	24