Seung-Hoi Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1806051/publications.pdf Version: 2024-02-01

SELING-HOLKOO

#	Article	IF	CITATIONS
1	The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Science, 2005, 310, 1642-1646.	6.0	1,704
2	The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 2005, 437, 1109-1114.	13.7	888
3	Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4459-4464.	3.3	878
4	PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Medicine, 2004, 10, 530-534.	15.2	499
5	Regulation of glucose metabolism from a liver-centric perspective. Experimental and Molecular Medicine, 2016, 48, e218-e218.	3.2	436
6	FoxO1 Regulates Multiple Metabolic Pathways in the Liver. Journal of Biological Chemistry, 2006, 281, 10105-10117.	1.6	428
7	Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature, 2007, 449, 366-369.	13.7	354
8	Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clinical and Molecular Hepatology, 2013, 19, 210.	4.5	334
9	CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature, 2003, 426, 190-193.	13.7	280
10	CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Reports, 2013, 46, 567-574.	1.1	173
11	Regulation of Hepatic Gluconeogenesis by an ER-Bound Transcription Factor, CREBH. Cell Metabolism, 2010, 11, 331-339.	7.2	166
12	Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nature Communications, 2014, 5, 4934.	5.8	156
13	Different Sterol Regulatory Element-binding Protein-1 Isoforms Utilize Distinct Co-regulatory Factors to Activate the Promoter for Fatty Acid Synthase. Journal of Biological Chemistry, 2000, 275, 4726-4733.	1.6	136
14	Glucose and Insulin Function through Two Distinct Transcription Factors to Stimulate Expression of Lipogenic Enzyme Genes in Liver. Journal of Biological Chemistry, 2001, 276, 9437-9445.	1.6	134
15	RORα Induces KLF4-Mediated M2 Polarization in the Liver Macrophages that Protect against Nonalcoholic Steatohepatitis. Cell Reports, 2017, 20, 124-135.	2.9	134
16	AMPK-dependent Repression of Hepatic Gluconeogenesis via Disruption of CREB·CRTC2 Complex by Orphan Nuclear Receptor Small Heterodimer Partner. Journal of Biological Chemistry, 2010, 285, 32182-32191.	1.6	130
17	Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis. Journal of Biological Chemistry, 2012, 287, 21628-21639.	1.6	113
18	Involvement of a Unique Carbohydrate-responsive Factor in the Glucose Regulation of Rat Liver Fatty-acid Synthase Gene Transcription. Journal of Biological Chemistry, 2001, 276, 21969-21975.	1.6	104

#	Article	IF	CITATIONS
19	Smad6 inhibits non-canonical TGF-β1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nature Communications, 2013, 4, 2562.	5.8	90
20	PPAR-Î ³ Activation Increases Insulin Secretion through the Up-regulation of the Free Fatty Acid Receptor GPR40 in Pancreatic Î ² -Cells. PLoS ONE, 2013, 8, e50128.	1.1	88
21	Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats. Journal of Clinical Investigation, 2017, 127, 4118-4123.	3.9	81
22	Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. Diabetes, 2016, 65, 1868-1882.	0.3	79
23	Skeletal muscle-specific <i>Prmt1</i> deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy, 2019, 15, 1069-1081.	4.3	79
24	TORC2 Regulates Hepatic Insulin Signaling via a Mammalian Phosphatidic Acid Phosphatase, LIPIN1. Cell Metabolism, 2009, 9, 240-251.	7.2	76
25	Glucose Regulation of Mouse S14 Gene Expression in Hepatocytes. Journal of Biological Chemistry, 2000, 275, 5200-5207.	1.6	74
26	Glucose Regulation of the Acetyl-CoA Carboxylase Promoter PI in Rat Hepatocytes. Journal of Biological Chemistry, 2001, 276, 16033-16039.	1.6	74
27	Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metabolism, 2006, 3, 367-378.	7.2	70
28	TCF7L2 Modulates Glucose Homeostasis by Regulating CREB- and FoxO1-Dependent Transcriptional Pathway in the Liver. PLoS Genetics, 2012, 8, e1002986.	1.5	70
29	Inverse Agonist of Nuclear Receptor ERRÎ ³ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis. Diabetes, 2013, 62, 3093-3102.	0.3	67
30	Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling. Cell Metabolism, 2005, 2, 331-338.	7.2	65
31	Estrogen-related receptor Î ³ controls hepatic CB ₁ receptor-mediated CYP2E1 expression and oxidative liver injury by alcohol. Gut, 2013, 62, 1044-1054.	6.1	64
32	Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nature Communications, 2018, 9, 5107.	5.8	64
33	Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17704-17709.	3.3	63
34	Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Reports, 2016, 15, 814-829.	2.9	61
35	Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology, 2012, 56, 1546-1556.	3.6	57
36	In Vino Veritas: A Tale of Two Sirt1s?. Cell, 2006, 127, 1091-1093.	13.5	56

#	Article	IF	CITATIONS
37	Transcriptional regulators of hepatic gluconeogenesis. Archives of Pharmacal Research, 2013, 36, 189-200.	2.7	56
38	Cannabinoid Receptor Type 1 (CB1R) Signaling Regulates Hepatic Gluconeogenesis via Induction of Endoplasmic Reticulum-bound Transcription Factor cAMP-responsive Element-binding Protein H (CREBH) in Primary Hepatocytes. Journal of Biological Chemistry, 2011, 286, 27971-27979.	1.6	55
39	SIK2 Is Critical in the Regulation of Lipid Homeostasis and Adipogenesis In Vivo. Diabetes, 2014, 63, 3659-3673.	0.3	55
40	Atypical antipsychotic drugs perturb AMPK-dependent regulation of hepatic lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E624-E632.	1.8	54
41	Salt-inducible Kinase Regulates Hepatic Lipogenesis by Controlling SREBP-1c Phosphorylation. Journal of Biological Chemistry, 2009, 284, 10446-10452.	1.6	53
42	Retinoic acid receptor-related orphan receptor α-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology, 2012, 55, 1379-1388.	3.6	53
43	Endoplasmic Reticulum Stress Promotes LIPIN2-Dependent Hepatic Insulin Resistance. Diabetes, 2011, 60, 1072-1081.	0.3	51
44	Retinoic acidâ€related orphan receptor alpha reprograms glucose metabolism in glutamineâ€deficient hepatoma cells. Hepatology, 2015, 61, 953-964.	3.6	51
45	Fibroblast growth factor 21 analogue <scp>LY2405319</scp> lowers blood glucose in streptozotocinâ€induced insulinâ€deficient diabetic mice by restoring brown adipose tissue function. Diabetes, Obesity and Metabolism, 2015, 17, 161-169.	2.2	51
46	Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nature Communications, 2018, 9, 3404.	5.8	50
47	The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation. Journal of Biological Chemistry, 2009, 284, 14211-14218.	1.6	46
48	Ring finger protein20 regulates hepatic lipid metabolism through protein kinase Aâ€dependent sterol regulatory element binding protein1c degradation. Hepatology, 2014, 60, 844-857.	3.6	45
49	Hepatic Crtc2 controls whole body energy metabolism via a miR-34a-Fgf21 axis. Nature Communications, 2017, 8, 1878.	5.8	44
50	Prdm4 induction by the small molecule butein promotes white adipose tissue browning. Nature Chemical Biology, 2016, 12, 479-481.	3.9	42
51	Curcumin Differentially Regulates Endoplasmic Reticulum Stress through Transcriptional Corepressor SMILE (Small Heterodimer Partner-interacting Leucine Zipper Protein)-mediated Inhibition of CREBH (cAMP Responsive Element-binding Protein H). Journal of Biological Chemistry, 2011, 286, 41972-41984.	1.6	41
52	PDK4 Deficiency Suppresses Hepatic Glucagon Signaling by Decreasing cAMP Levels. Diabetes, 2018, 67, 2054-2068.	0.3	40
53	DAX-1 Acts as a Novel Corepressor of Orphan Nuclear Receptor HNF4α and Negatively Regulates Gluconeogenic Enzyme Gene Expression. Journal of Biological Chemistry, 2009, 284, 27511-27523.	1.6	39
54	PKB/Akt phosphorylation of ERRÎ ³ contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetologia, 2014, 57, 2576-2585.	2.9	39

#	Article	IF	CITATIONS
55	Ursodeoxycholic Acid Inhibits Liver X Receptor α-mediated Hepatic Lipogenesis via Induction of the Nuclear Corepressor SMILE. Journal of Biological Chemistry, 2014, 289, 1079-1091.	1.6	37
56	Salt-Inducible Kinase 1 Terminates cAMP Signaling by an Evolutionarily Conserved Negative-Feedback Loop in β-Cells. Diabetes, 2015, 64, 3189-3202.	0.3	37
57	Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. ELife, 2016, 5, .	2.8	37
58	Hepatic Cannabinoid Receptor Type 1 Mediates Alcohol-Induced Regulation of Bile Acid Enzyme Genes Expression Via CREBH. PLoS ONE, 2013, 8, e68845.	1.1	36
59	Activation of Cannabinoid Receptor Type 1 (Cb1r) Disrupts Hepatic Insulin Receptor Signaling via Cyclic AMP-response Element-binding Protein H (Crebh)-mediated Induction of Lipin1 Gene. Journal of Biological Chemistry, 2012, 287, 38041-38049.	1.6	35
60	The CREB Family: key regulators of hepatic metabolism. Annales D'Endocrinologie, 2004, 65, 73-75.	0.6	34
61	Metformin stimulates IGFBP-2 gene expression through PPARalpha in diabetic states. Scientific Reports, 2016, 6, 23665.	1.6	34
62	Transcriptional cross talk between orphan nuclear receptor ERRÂ and transmembrane transcription factor ATF6Â coordinates endoplasmic reticulum stress response. Nucleic Acids Research, 2013, 41, 6960-6974.	6.5	33
63	Arginine Methylation of CRTC2 Is Critical in the Transcriptional Control of Hepatic Glucose Metabolism. Science Signaling, 2014, 7, ra19.	1.6	30
64	C1-Ten Is a Protein Tyrosine Phosphatase of Insulin Receptor Substrate 1 (IRS-1), Regulating IRS-1 Stability and Muscle Atrophy. Molecular and Cellular Biology, 2013, 33, 1608-1620.	1.1	29
65	Adiponectin and thiazolidinedione targets CRTC2 to regulate hepatic gluconeogenesis. Experimental and Molecular Medicine, 2009, 41, 577.	3.2	27
66	CREB/CRTC2 controls GLPâ€1â€dependent regulation of glucose homeostasis. FASEB Journal, 2018, 32, 1566-1578.	0.2	27
67	Phosphoenolpyruvate Carboxykinase and Glucose-6-phosphatase Are Required for Steroidogenesis in Testicular Leydig Cells. Journal of Biological Chemistry, 2012, 287, 41875-41887.	1.6	26
68	HBx induces the proliferation of hepatocellular carcinoma cells via AP1 over-expressed as a result of ER stress. Biochemical Journal, 2015, 466, 115-121.	1.7	26
69	The SMILE transcriptional corepressor inhibits cAMP response element–binding protein (CREB)–mediated transactivation of gluconeogenic genes. Journal of Biological Chemistry, 2018, 293, 13125-13133.	1.6	25
70	Cyclic AMP Response Element-binding Protein H (CREBH) Mediates the Inhibitory Actions of Tumor Necrosis Factor α in Osteoblast Differentiation by Stimulating Smad1 Degradation. Journal of Biological Chemistry, 2015, 290, 13556-13566.	1.6	24
71	Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis. Diabetes, 2016, 65, 62-73.	0.3	24
72	Outfoxing insulin resistance?. Nature, 2004, 432, 958-959.	13.7	23

#	Article	IF	CITATIONS
73	PRMT1 Is Required for the Maintenance of Mature β-Cell Identity. Diabetes, 2020, 69, 355-368.	0.3	22
74	Orphan Nuclear Receptor DAX-1 Acts as a Novel Corepressor of Liver X Receptor α and Inhibits Hepatic Lipogenesis*. Journal of Biological Chemistry, 2010, 285, 9221-9232.	1.6	21
75	Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism. Endocrinology and Metabolism, 2014, 29, 435.	1.3	20
76	Fatty Acids and Insulin Resistance: A Perfect Storm. Molecular Cell, 2006, 21, 449-450.	4.5	18
77	Orphan Nuclear Receptor Errl ³ Induces C-Reactive Protein Gene Expression through Induction of ER-Bound Bzip Transmembrane Transcription Factor CREBH. PLoS ONE, 2014, 9, e86342.	1.1	18
78	NFIL3 is a negative regulator of hepatic gluconeogenesis. Metabolism: Clinical and Experimental, 2017, 77, 13-22.	1.5	17
79	Fast food diet-induced non-alcoholic fatty liver disease exerts early protective effect against acetaminophen intoxication in mice. BMC Gastroenterology, 2017, 17, 124.	0.8	17
80	Salt-inducible kinase 1 regulates bone anabolism via the CRTC1–CREB–Id1 axis. Cell Death and Disease, 2019, 10, 826.	2.7	17
81	Essential Role of Protein Arginine Methyltransferase 1 in Pancreas Development by Regulating Protein Stability of Neurogenin 3. Diabetes and Metabolism Journal, 2019, 43, 649.	1.8	17
82	Role of CRTC2 in Metabolic Homeostasis: Key Regulator of Whole-Body Energy Metabolism?. Diabetes and Metabolism Journal, 2020, 44, 498.	1.8	17
83	Effect of BI-1 on insulin resistance through regulation of CYP2E1. Scientific Reports, 2016, 6, 32229.	1.6	16
84	Overweight in Mice and Enhanced Adipogenesis In Vitro Are Associated With Lack of the Hedgehog Coreceptor Boc. Diabetes, 2015, 64, 2092-2103.	0.3	15
85	Bax Inhibitor-1 regulates hepatic lipid accumulation via ApoB secretion. Scientific Reports, 2016, 6, 27799.	1.6	15
86	Liver-Specific Deletion of Mouse CTCF Leads to Hepatic Steatosis via Augmented PPARÎ ³ Signaling. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1761-1787.	2.3	14
87	Promininâ€1â€Radixin axis controls hepatic gluconeogenesis by regulating PKA activity. EMBO Reports, 2020, 21, e49416.	2.0	11
88	Depletion of <i>Prmt1</i> in Adipocytes Impairs Glucose Homeostasis in Diet-Induced Obesity. Diabetes, 2021, 70, 1664-1678.	0.3	9
89	A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Molecular Metabolism, 2022, 55, 101402.	3.0	9
90	Cannabinoid type 1 receptor gene polymorphisms are not associated with olanzapine-induced weight gain. Human Psychopharmacology, 2011, 26, 332-337.	0.7	8

#	Article	IF	CITATIONS
91	Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation in Vivo. Journal of Biological Chemistry, 2015, 290, 18708-18720.	1.6	6
92	Reply:. Hepatology, 2013, 57, 2091-2091.	3.6	3
93	Identification of Protein Z as a Potential Novel Biomarker for the Diagnosis of Prediabetes. Endocrinology and Metabolism, 2021, 36, 572-573.	1.3	0
94	Obesity and ER Stress. The Korean Journal of Obesity, 2011, 20, 45.	0.2	0