
Vida Mildaziene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1805437/publications.pdf Version: 2024-02-01

VIDA MILDAZIENE

#	Article	IF	CITATIONS
1	The Potential of Cold Plasma and Electromagnetic Field as Stimulators of Natural Sweeteners Biosynthesis in Stevia rebaudiana Bertoni. Plants, 2022, 11, 611.	3.5	10
2	Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11, 856.	3.5	32
3	Effects of Non-Thermal Plasma Treatment on Plant Physiological and Biochemical Processes. Plants, 2022, 11, 1018.	3.5	7
4	Seed treatment with cold plasma and electromagnetic field induces changes in red clover root growth dynamics, flavonoid exudation, and activates nodulation. Plasma Processes and Polymers, 2021, 18, .	3.0	17
5	Longâ€ŧerm response of Norway spruce to seed treatment with cold plasma: Dependence of the effects on the genotype. Plasma Processes and Polymers, 2021, 18, 2000159.	3.0	11
6	Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Scientific Reports, 2021, 11, 2539.	3.3	28
7	Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. Applied Sciences (Switzerland), 2021, 11, 4391.	2.5	25
8	The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color. Applied Sciences (Switzerland), 2021, 11, 4676.	2.5	9
9	Relationship between cold plasma treatment-induced changes in radish seed germination and phytohormone balance. Japanese Journal of Applied Physics, 2020, 59, SH1001.	1.5	30
10	Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. Frontiers in Plant Science, 2020, 11, 568924.	3.6	20
11	Changes in Growth and Production of Non-Psychotropic Cannabinoids Induced by Pre-Sowing Treatment of Hemp Seeds with Cold Plasma, Vacuum and Electromagnetic Field. Applied Sciences (Switzerland), 2020, 10, 8519.	2.5	11
12	Effect of seed treatment with cold plasma and electromagnetic field on red clover germination, growth and content of major isoflavones. Journal Physics D: Applied Physics, 2020, 53, 264001.	2.8	13
13	Impact of radish sprouts seeds coat color on the electron paramagnetic resonance signals after plasma treatment. Japanese Journal of Applied Physics, 2020, 59, SHHF01.	1.5	20
14	Hyperthermia potentiates cisplatin cytotoxicity and negative effects on mitochondrial functions in OVCAR-3 cells. Journal of Bioenergetics and Biomembranes, 2019, 51, 301-310.	2.3	8
15	Dielectric barrier discharge plasma treatment-induced changes in sunflower seed germination, phytohormone balance, and seedling growth. Applied Physics Express, 2019, 12, 126003.	2.4	28
16	Treatment of Common Sunflower (Helianthus annus L.) Seeds with Radio-frequency Electromagnetic Field and Cold Plasma Induces Changes in Seed Phytohormone Balance, Seedling Development and Leaf Protein Expression. Scientific Reports, 2019, 9, 6437.	3.3	93
17	Changes in Norway spruce germination and growth induced by preâ€sowing seed treatment with cold plasma and electromagnetic field: Shortâ€ŧerm versus longâ€ŧerm effects. Plasma Processes and Polymers, 2018, 15, 1700068.	3.0	45
18	Preâ€sowing seed treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (<i>Echinacea purpurea</i>) leaves. Plasma Processes and Polymers, 2018, 15, 1700059.	3.0	53

VIDA MILDAZIENE

#	Article	IF	CITATIONS
19	Impact of Gender and Age on Hyperthermia-Induced Changes in Respiration of Liver Mitochondria. Medicina (Lithuania), 2018, 54, 62.	2.0	2
20	Contribution of mitochondria to injury of hepatocytes and liver tissue by hyperthermia. Medicina (Lithuania), 2017, 53, 40-49.	2.0	7
21	Response of perennial woody plants to seed treatment by electromagnetic field and lowâ€ŧemperature plasma. Bioelectromagnetics, 2016, 37, 536-548.	1.6	37
22	Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells. Mediators of Inflammation, 2014, 2014, 1-16.	3.0	12
23	Mitochondrial Membrane Barrier Function as a Target of Hyperthermia. Medicina (Lithuania), 2012, 48, 36.	2.0	6
24	Mitochondrial membrane barrier function as a target of hyperthermia. Medicina (Lithuania), 2012, 48, 249-55.	2.0	7
25	Differentiation-related changes in myogenic stem cells. Biologija (Vilnius, Lithuania), 2010, 56, 55-62.	0.2	1
26	Gender-dependence of hyperthermia-induced changes in respiration of rat liver mitochondria. Biologija (Vilnius, Lithuania), 2010, 56, 88-92.	0.2	1
27	Acute temperature resistance threshold in heart mitochondria: Febrile temperature activates function but exceeding it collapses the membrane barrier. International Journal of Hyperthermia, 2010, 26, 56-66.	2.5	39
28	Modular kinetic analysis reveals differences in Cd ²⁺ and Cu ²⁺ ionâ€induced impairment of oxidative phosphorylation in liver. FEBS Journal, 2009, 276, 3656-3668.	4.7	20
29	Differential scanning calorimetry (DSC) analysis of isolated liver and heart mitochondria. Biologija (Vilnius, Lithuania), 2008, 54, 167-170.	0.2	2
30	Tubular mitochondrial alterations in neonatal rats subjected to RAS inhibition. American Journal of Physiology - Renal Physiology, 2006, 290, F1260-F1269.	2.7	5
31	Multiple Effects of 2,2`,5,5`-Tetrachlorobiphenyl on Oxidative Phosphorylation in Rat Liver Mitochondria. Toxicological Sciences, 2002, 65, 220-227.	3.1	38
32	Analysis of effects of 2,2',5,5'-tetrachlorobiphenyl on the flux control in oxidative phosphorylation system in rat liver mitochondria. Molecular Biology Reports, 2002, 29, 35-40.	2.3	7
33	Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Biochemical Journal, 2000, 349, 519.	3.7	22
34	Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Biochemical Journal, 2000, 349, 519-526.	3.7	34
35	Tetraphenylphosphonium inhibits oxidation of physiological substrates in heart mitochondria. Molecular and Cellular Biochemistry, 1997, 174, 67-70.	3.1	5
36	Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. Journal of Bioenergetics and Biomembranes, 1997, 29, 89-95.	2.3	403

#	Article	IF	CITATIONS
37	Tetraphenylphosphonium inhibits oxidation of physiological substrates in heart mitochondria. , 1997, , 67-70.		1
38	Ca2+ stimulates both the respiratory and phosphorylation subsystems in rat heart mitochondria. Biochemical Journal, 1996, 320, 329-334.	3.7	52
39	Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1272, 154-158.	3.8	88
40	Calcium Indirectly Increases the Control Exerted by the Adenine Nucleotide Translocator over 2-Oxoglutarate Oxidation in Rat Heart Mitochondria. Archives of Biochemistry and Biophysics, 1995, 324, 130-134.	3.0	44
41	The function of ATP/ADP translocator in the regulation of mitochondrial respiration during development of heart ischemic injury. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 175-180.	1.0	15