Chirag Acharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1805223/publications.pdf

Version: 2024-02-01

		686830 940134	
18	1,531	13	16
papers	citations	h-index	g-index
18	18	18	2649
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 4290-4300.	3.2	192
2	Elevated neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio and decreased platelet-to-lymphocyte ratio are associated with poor prognosis in multiple myeloma. Oncotarget, 2017, 8, 18792-18801.	0.8	71
3	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	0.6	89
4	Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood, 2016, 128, 1590-1603.	0.6	139
5	Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clinical Cancer Research, 2016, 22, 6099-6109.	3.2	19
6	miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer Journal, 2016, 6, e380-e380.	2.8	50
7	SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia, 2016, 30, 399-408.	3.3	183
8	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Reverse Immunosuppression in Multiple Myeloma. Blood, 2016, 128, 2106-2106.	0.6	3
9	Osteoclasts Promote Immune Suppressive Microenvironment in Multiple Myeloma: Therapeutic Implication. Blood, 2016, 128, 3303-3303.	0.6	1
10	APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells. Clinical Cancer Research, 2015, 21, 3934-3945.	3.2	31
11	Cytogenetic and clinical marks for defining high-risk myeloma in the context of bortezomib treatment. Experimental Hematology, 2015, 43, 168-176.e2.	0.2	13
12	The Impact of Clone Size on the Prognostic Value of Chromosome Aberrations by Fluorescence <i>In Situ</i> Hybridization in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 2148-2156.	3.2	76
13	Detection of recurrent cytogenetic aberrations in multiple myeloma: A comparison between MLPA and iFISH. Oncotarget, 2015, 6, 34276-34287.	0.8	15
14	Activation of Lysosomal Function and Reactive Oxygen Species Play Crucial Roles in SAR650984-Induced Direct Killing of Human Multiple Myeloma Cells with Mutated p53, Which Is Further Augmented By Pomalidomide. Blood, 2015, 126, 4253-4253.	0.6	0
15	CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia, 2014, 28, 155-165.	3.3	250
16	Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leukemia Research, 2014, 38, 649-659.	0.4	38
17	Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123, 3128-3138.	0.6	361
18	Constitutive B-Cell Maturation Antigen (BCMA) Activation In Human Multiple Myeloma Cells Promotes Myeloma Cell Growth and Survival In The Bone Marrow Microenvironment Via Upregulated MCL-1 and NFÎ $^\circ$ B Signaling. Blood, 2013, 122, 681-681.	0.6	0