
Olesja M Bondarenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, 1181-1200.	4.2	1,016
2	Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells <i>in vitro</i> : A comparative review. Nanotoxicology, 2014, 8, 57-71.	3.0	297
3	Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles. PLoS ONE, 2013, 8, e64060.	2.5	208
4	Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environmental Pollution, 2012, 169, 81-89.	7.5	180
5	Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry, 2010, 398, 701-716.	3.7	175
6	Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Science of the Total Environment, 2020, 707, 136073.	8.0	100
7	A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Archives of Toxicology, 2013, 87, 721-733.	4.2	90
8	Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. International Journal of Nanomedicine, 2018, Volume 13, 6779-6790.	6.7	82
9	Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology, 2016, 10, 1229-1242.	3.0	78
10	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	11.9	67
11	Antimicrobial potency of differently coated 10 and 50†nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 170, 401-410.	5.0	64
12	Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Scientific Reports, 2018, 8, 1115.	3.3	62
13	Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials, 2017, 121, 28-40.	11.4	58
14	LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri. Sensors, 2011, 11, 7865-7878.	3.8	54
15	Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria. Sensors, 2008, 8, 6899-6923.	3.8	53
16	Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydrate Polymers, 2016, 136, 710-720.	10.2	53
17	The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor. Sensors, 2011, 11, 10502-10521.	3.8	45
18	https://www.altex.org/index.php/altex/article/view/1339. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 682-699.	1.5	42

Olesja M Bondarenko

#	Article	IF	CITATIONS
19	Antimicrobial Activity of Polyoxometalate Ionic Liquids against Clinically Relevant Pathogens. ChemPlusChem, 2017, 82, 867-871.	2.8	41
20	Environmental hazard of oil shale combustion fly ash. Journal of Hazardous Materials, 2012, 229-230, 192-200.	12.4	38
21	Effects of Rhamnolipids from Pseudomonas aeruginosa DS10-129 on Luminescent Bacteria: Toxicity and Modulation of Cadmium Bioavailability. Microbial Ecology, 2010, 59, 588-600.	2.8	36
22	Neurotrophic Factors in Parkinson's Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Frontiers in Cellular Neuroscience, 2021, 15, 682597.	3.7	36
23	Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Archives of Toxicology, 2017, 91, 2315-2330.	4.2	35
24	Solubility-driven toxicity of CuO nanoparticles to Caco2 cells and Escherichia coli : Effect of sonication energy and test environment. Toxicology in Vitro, 2016, 36, 172-179.	2.4	20
25	Small-Molecule Inhibitors of the RNA M6A Demethylases FTO Potently Support the Survival of Dopamine Neurons. International Journal of Molecular Sciences, 2021, 22, 4537.	4.1	20
26	Metal-Containing Nano-Antimicrobials: Differentiating the Impact of Solubilized Metals and Particles. , 2012, , 253-290.		19
27	Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties. Archives of Toxicology, 2020, 94, 1561-1573.	4.2	14
28	Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials. Nanoscale Research Letters, 2018, 13, 111.	5.7	4
29	Antimicrobial activity of polyoxometalate ionic liquids (POM-ILs) against clinically relevant pathogens. Toxicology Letters, 2017, 280, S193.	0.8	3
30	Cubic Iron Core–Shell Nanoparticles Functionalized to Obtain High-Performance MRI Contrast Agents. Materials, 2022, 15, 2228.	2.9	3
31	Recent Discoveries in Nanoparticle–Macrophage Interactions: In Vitro Models for Nanosafety Testing and Novel Nanomedical Approaches for Immunotherapy. Nanomaterials, 2021, 11, 2971.	4.1	2
32	"Safe-by-design―and "toxic-by designâ€ , two approaches for design of novel functional nanomaterials. Toxicology Letters, 2014, 229, S11-S12.	0.8	0
33	Enzymatic synthesis and ways of further treatment of fructooligosaccharides and polymeric levan for prebiotic efficiency studies. New Biotechnology, 2016, 33, S122-S123.	4.4	0
34	Current challenges and coming opportunities in nanoparticle risk assessment. Frontiers of Nanoscience, 2020, 16, 353-371.	0.6	0