Karnam Venkatesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804379/publications.pdf

Version: 2024-02-01

23 papers 504 citations

759233 12 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

564 citing authors

#	Article	IF	Citations
1	Positive and negative GPSâ€TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. Journal of Geophysical Research: Space Physics, 2016, 121, 5613-5625.	2.4	109
2	Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes. Applied Biochemistry and Biotechnology, 2015, 177, 1299-1312.	2.9	78
3	On the performance of the IRIâ€2012 and NeQuick2 models during the increasing phase of the unusual 24th solar cycle in the Brazilian equatorial and lowâ€latitude sectors. Journal of Geophysical Research: Space Physics, 2014, 119, 5087-5105.	2.4	41
4	On the variabilities of the Total Electron Content (TEC) over the Indian low latitude sector. Advances in Space Research, 2012, 49, 898-913.	2.6	34
5	Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports, 2019, 46, 1845-1853.	2.3	29
6	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	29
7	Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2017, 23, 945-954.	3.1	25
8	Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiology and Biochemistry, 2020, 148, 246-259.	5.8	22
9	Natural variation in root system architecture in diverse wheat genotypes grown under different nitrate conditions and root growth media. Theoretical and Experimental Plant Physiology, 2018, 30, 223-234.	2.4	20
10	Total electron content disturbances during minor sudden stratospheric warming, over the Brazilian region: A case study during January 2012. Journal of Geophysical Research: Space Physics, 2017, 122, 2119-2135.	2.4	18
11	Assessment of IRI-2012 profile parameters by comparison with the ones inferred using NeQuick2, ionosonde and FORMOSAT-1 data during the high solar activity over Brazilian equatorial and low latitude sector. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 121, 10-23.	1.6	16
12	Sustainable intensification of maize and wheat cropping system through pulse intercropping. Scientific Reports, 2021, 11, 18805.	3.3	14
13	Influence of Diurnal Irradiance Variation on Chlorophyll Values in Wheat: A Comparative Study Using Different Chlorophyll Meters. The National Academy of Sciences, India, 2017, 40, 221-224.	1.3	13
14	Bottom side profiles for two close stations at the southern crest of the EIA: Differences and comparison with IRI-2012 and NeQuick2 for low and high solar activity. Advances in Space Research, 2018, 61, 295-315.	2.6	10
15	Study of the F3 and StF4 Layers at Tucumán Near the Southern Crest of the Equatorial Ionization Anomaly in Western South America. Journal of Geophysical Research: Space Physics, 2018, 123, 2156-2167.	2.4	8
16	Equatorial and low-latitude positive ionospheric phases due to moderate geomagnetic storm during high solar activity in January 2013. Advances in Space Research, 2019, 64, 995-1010.	2.6	7
17	Effect of Rice Residue Retention and Foliar Application of K on Water Productivity and Profitability of Wheat in North West India. Agronomy, 2020, 10, 434.	3.0	7
18	Molecular Characterization of GS2 and Fd-GOGAT Homeologues and Their Biased Response to Nitrogen Stress in Bread Wheat (Triticum aestivum L.). Journal of Plant Growth Regulation, 2022, 41, 2555-2569.	5.1	6

#	Article	IF	CITATIONS
19	Daily and Monthly Variations of the Equatorial Ionization Anomaly (EIA) Over the Brazilian Sector During the Descending Phase of the Solar Cycle 24. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027906.	2.4	5
20	Physio-molecular traits of contrasting bread wheat genotypes associated with 15N influx exhibiting homeolog expression bias in nitrate transporter genes under different external nitrate concentrations. Planta, 2022, 255, 104.	3.2	5
21	Incorporation of rice residue and green gram cultivation saves nitrogen, improve soil health and sustainability of rice-wheat system. Field Crops Research, 2021, 271, 108248.	5.1	4
22	Analysis of transgene(s) (psy+crtl) inheritance and its stability over generations in the genetic background of indica rice cultivar Swarna. Journal of Plant Biochemistry and Biotechnology, 2011, 20, 29-38.	1.7	3
23	Application and Achievements of Recombinant DNA Technology in Crop Improvement. , 2018, , 299-328.		1