
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1804219/publications.pdf Version: 2024-02-01

ILAN SUN

#	Article	IF	CITATIONS
1	Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan Plateau: a synthesis. Ecosphere, 2017, 8, e01656.	2.2	163
2	Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 2020, 65, 1405-1414.	9.0	151
3	On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau. Remote Sensing, 2013, 5, 1894-1911.	4.0	119
4	Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 2018, 18, 10.	3.0	106
5	Grazing enhances soil nutrient effects: Tradeâ€offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation and Development, 2018, 29, 337-348.	3.9	93
6	Rationallyâ€Designed <i>Sâ€</i> Chiral Bissulfinamides as Highly Enantioselective Organocatalysts for Reduction of Ketimines. Advanced Synthesis and Catalysis, 2008, 350, 619-623.	4.3	92
7	Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 2016, 11, 024012.	5.2	88
8	Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Science Reviews, 2018, 185, 308-324.	9.1	86
9	The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environmental Monitoring and Assessment, 2016, 188, 20.	2.7	82
10	Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion. Ecology and Evolution, 2015, 5, 4492-4504.	1.9	79
11	Group Exchange between Ketones and Carboxylic Acids through Directing Group Assisted Rh-Catalyzed Reorganization of Carbon Skeletons. Journal of the American Chemical Society, 2015, 137, 5012-5020.	13.7	78
12	Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 2020, 29, 50-64.	5.8	77
13	Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological Indicators, 2016, 60, 1070-1076.	6.3	76
14	Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environmental Earth Sciences, 2016, 75, 1.	2.7	72
15	Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 2018, 615, 1535-1546.	8.0	70
16	Soil and vegetation carbon turnover times from tropical to boreal forests. Functional Ecology, 2018, 32, 71-82.	3.6	68
17	Meta-analysis demonstrating that moderate grazing can improve the soil quality across China's grassland ecosystems. Applied Soil Ecology, 2020, 147, 103438.	4.3	54
18	Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau. PLoS ONE, 2014, 9, e108821.	2.5	49

#	Article	IF	CITATIONS
19	Change in the tradeâ€off between aboveground and belowground biomass of alpine grassland: Implications for the land degradation process. Land Degradation and Development, 2020, 31, 105-117.	3.9	48
20	Optimizing grazing exclusion practices to achieve Goal 15 of the sustainable development goals in the Tibetan Plateau. Science Bulletin, 2021, 66, 1493-1496.	9.0	48
21	Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 2019, 28, 442-455.	5.8	46
22	Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet. Ecological Indicators, 2019, 107, 105647.	6.3	43
23	Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China's grasslands. GlScience and Remote Sensing, 2017, 54, 881-897.	5.9	42
24	Concurrent and Lagged Effects of Extreme Drought Induce Net Reduction in Vegetation Carbon Uptake on Tibetan Plateau. Remote Sensing, 2020, 12, 2347.	4.0	42
25	Dual Influence of Climate Change and Anthropogenic Activities on the Spatiotemporal Vegetation Dynamics Over the Qinghaiâ€Tibetan Plateau From 1981 to 2015. Earth's Future, 2022, 10, .	6.3	41
26	Chiral Lewis Base atalyzed, Enantioselective Reduction of Unprotected βâ€Enamino Esters with Trichlorosilane. Advanced Synthesis and Catalysis, 2016, 358, 1042-1047.	4.3	40
27	Verification of the biomass transfer hypothesis under moderate grazing across the Tibetan plateau: a meta-analysis. Plant and Soil, 2021, 458, 139-150.	3.7	40
28	Accelerated Urban Expansion in Lhasa City and the Implications for Sustainable Development in a Plateau City. Sustainability, 2017, 9, 1499.	3.2	38
29	Organocatalytic Enantioselective Dipolar [3+2] Cycloadditions of Acetylenic Aldehydes with Nitrones for the Formation of Chiral 4â€Isoxazolines. Advanced Synthesis and Catalysis, 2012, 354, 359-363.	4.3	36
30	Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation. Science of the Total Environment, 2020, 733, 139048.	8.0	36
31	Direct alkenyl C–H functionalization of cyclic enamines with carboxylic acids via Rh catalysis assisted by hydrogen bonding. Organic Chemistry Frontiers, 2014, 1, 634-638.	4.5	35
32	A Facile and Efficient Approach to <i>N</i> â€Protectedâ€Î²â€Sulfinyl―enamines <i>via C</i> â€Sulfinylation of Enamides and Enecarbamates. Advanced Synthesis and Catalysis, 2010, 352, 1876-1880.	4.3	34
33	Litter chemical structure is more important than species richness in affecting soil carbon and nitrogen dynamics including gas emissions from an alpine soil. Biology and Fertility of Soils, 2015, 51, 791-800.	4.3	34
34	Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 271, 92-101.	4.8	34
35	Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS Applied Materials & Interfaces, 2020, 12, 50248-50259.	8.0	33
36	Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains. Remote Sensing of Environment, 2012, 127, 44-59.	11.0	32

#	Article	IF	CITATIONS
37	The patterns and mechanisms of precipitation use efficiency in alpine grasslands on the Tibetan Plateau. Agriculture, Ecosystems and Environment, 2020, 292, 106833.	5.3	32
38	Chiral 2,3â€Ðisubstituted Indolines from Indoles and Aldehydes by Organocatalyzed Tandem Synthesis Involving Reduction by Trichlorosilane. Advanced Synthesis and Catalysis, 2014, 356, 2224-2230.	4.3	30
39	Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow. Scientific Reports, 2017, 7, 15193.	3.3	29
40	Temporal and Spatial Patterns of China's Main Air Pollutants: Years 2014 and 2015. Atmosphere, 2017, 8, 137.	2.3	29
41	Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes. Biogeosciences, 2017, 14, 3947-3956.	3.3	29
42	Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecological Indicators, 2018, 84, 507-514.	6.3	29
43	Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil. Soil Biology and Biochemistry, 2017, 109, 124-134.	8.8	28
44	Biomass Partitioning and Its Relationship with the Environmental Factors at the Alpine Steppe in Northern Tibet. PLoS ONE, 2013, 8, e81986.	2.5	28
45	Coupling between plant nitrogen and phosphorus along water and heat gradients in alpine grassland. Science of the Total Environment, 2020, 701, 134660.	8.0	27
46	SOC changes were more sensitive in alpine grasslands than in temperate grasslands during grassland transformation in China: A meta-analysis. Journal of Cleaner Production, 2021, 308, 127430.	9.3	27
47	Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir, China. PLoS ONE, 2014, 9, e102344.	2.5	26
48	Health risk assessment of China's main air pollutants. BMC Public Health, 2017, 17, 212.	2.9	26
49	A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data. Hydrology and Earth System Sciences, 2018, 22, 757-766.	4.9	26
50	Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau. Global Ecology and Conservation, 2021, 32, e01886.	2.1	25
51	Toward a sustainable grassland ecosystem worldwide. Innovation(China), 2022, 3, 100265.	9.1	25
52	Don't judge toxic weeds on whether they are native but on their ecological effects. Ecology and Evolution, 2020, 10, 9014-9025.	1.9	24
53	Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE, 2017, 12, e0181825.	2.5	23
54	Restoration efficiency of short-term grazing exclusion is the highest at the stage shifting from light to moderate degradation at Zoige, Tibetan Plateau. Ecological Indicators, 2020, 114, 106323.	6.3	23

#	Article	IF	CITATIONS
55	Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment, 2021, 800, 149572.	8.0	23
56	YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer. Cell Death and Differentiation, 2022, 29, 1283-1295.	11.2	23
57	Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 2019, 16, 2348-2360.	2.0	22
58	Fences undermine biodiversity targets. Science, 2021, 374, 269-269.	12.6	22
59	The Haze Nightmare Following the Economic Boom in China: Dilemma and Tradeoffs. International Journal of Environmental Research and Public Health, 2016, 13, 402.	2.6	21
60	Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. Environmental Research, 2022, 203, 111894.	7.5	20
61	Tuning the optical properties of BODIPY dye through Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Science China Chemistry, 2012, 55, 125-130.	8.2	19
62	One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Global Ecology and Conservation, 2020, 22, e00951.	2.1	18
63	Mutual feedback between above- and below-ground controls the restoration of alpine ecosystem multifunctionality in long-term grazing exclusion. Journal of Cleaner Production, 2022, 333, 130184.	9.3	18
64	Total synthesis of Sparstolonin B, a potent anti-inflammatory agent. RSC Advances, 2015, 5, 12354-12357.	3.6	17
65	Reductive Hydrazination with Trichlorosilane: A Method for the Preparation of 1,1-Disubstituted Hydrazines. Organic Letters, 2016, 18, 1900-1903.	4.6	17
66	Research trends on bats in China: A twenty-first century review. Mammalian Biology, 2019, 98, 163-172.	1.5	17
67	Focus on economy or ecology? A threeâ€dimensional tradeâ€off based on ecological carrying capacity in southwest China. Natural Resource Modelling, 2019, 32, e12201.	2.0	17
68	KLF5-induced lncRNA IGFL2-AS1 promotes basal-like breast cancer cell growth and survival by upregulating the expression of IGFL1. Cancer Letters, 2021, 515, 49-62.	7.2	17
69	Suitable duration of grazing exclusion for restoration of a degraded alpine meadow on the eastern Qinghai-Tibetan Plateau. Catena, 2021, 207, 105582.	5.0	17
70	Ecosystem Health: Assessment Framework, Spatial Evolution, and Regional Optimization in Southwest China. Chinese Geographical Science, 2020, 30, 142-156.	3.0	16
71	Variation of plant CSR strategies across a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. Science of the Total Environment, 2022, 838, 156512.	8.0	16
72	Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China. Journal of Arid Land, 2016, 8, 881-889.	2.3	15

#	Article	IF	CITATIONS
73	Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012). Advances in Meteorology, 2017, 2017, 1-12.	1.6	15
74	Precipitation-use efficiency may explain net primary productivity allocation under different precipitation conditions across global grassland ecosystems. Global Ecology and Conservation, 2019, 20, e00713.	2.1	14
75	Roles of RNF126 and BCA2 E3 ubiquitin ligases in DNA damage repair signaling and targeted cancer therapy. Pharmacological Research, 2020, 155, 104748.	7.1	14
76	Plant-microbe interactions regulate the aboveground community nitrogen accumulation rate in different environmental conditions on the Tibetan Plateau. Catena, 2021, 204, 105407.	5.0	14
77	Divergent biomass partitioning to aboveground and belowground across forests in China. Journal of Plant Ecology, 2018, 11, 484-492.	2.3	13
78	Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine. Remote Sensing, 2020, 12, 2651.	4.0	13
79	Facile Allylation of <i>N</i> â€Boc and <i>N</i> â€Cbz Imines with Allyltrichlorosilane promoted by DMF. Synthetic Communications, 2008, 38, 1003-1010.	2.1	12
80	Xenopus Claudin-6 is required for embryonic pronephros morphogenesis and terminal differentiation. Biochemical and Biophysical Research Communications, 2015, 462, 178-183.	2.1	12
81	Shift in nurse effect from facilitation to competition with increasing size of Salix cupularis canopy in a desertified alpine meadow on the Tibetan Plateau. Catena, 2020, 195, 104757.	5.0	12
82	Synthesis and biological evaluation of pyranoisoflavone derivatives as anti-inflammatory agents. FA¬toterapA¬A¢, 2014, 97, 172-183.	2.2	11
83	Precipitation mediates the temporal dynamics of net primary productivity and precipitation use efficiency in Chinaâ \in ^M s northern and southern forests. Annals of Forest Science, 2019, 76, 1.	2.0	11
84	Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China. Journal of Arid Land, 2020, 12, 806-818.	2.3	11
85	Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Molecular Ecology, 2021, 30, 2641-2658.	3.9	11
86	Dynamics and Controls of Carbon Use Efficiency across China's Grasslands. Polish Journal of Environmental Studies, 2018, 27, 1541-1550.	1.2	11
87	Effect of grazing exclusion on ecosystem services dynamics, trade-offs and synergies in Northern Tibet. Ecological Engineering, 2022, 179, 106638.	3.6	11
88	Formation of Chiral <i>α</i> â€Monofluorinatedâ€ <i>β</i> â€amino Esters through Organocatalytic Asymmetric Reduction of <i>α</i> â€Fluoroâ€ <i>β</i> â€enamino Esters by Trichlorosilane. Chinese Journal of Chemistry, 2012, 30, 2636-2640.	4.9	10
89	Migration of vegetation boundary between alpine steppe and meadow on a century-scale across the Tibetan Plateau. Ecological Indicators, 2022, 136, 108599.	6.3	10
90	The Response of Vegetation Biomass to Soil Properties along Degradation Gradients of Alpine Meadow at Zoige Plateau. Chinese Geographical Science, 2020, 30, 446-455.	3.0	9

#	Article	IF	CITATIONS
91	Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet. Scientific Reports, 2015, 5, 17664.	3.3	8
92	Chiral Phosphoric Acid Catalyzed Enantioselective Allylation of Aldehydes with Allyltrichlorosilane. Chinese Journal of Chemistry, 2011, 29, 1669-1671.	4.9	7
93	The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau. PeerJ, 2019, 7, e7272.	2.0	7
94	Chiral N-formyl amino alcohol as Lewis basic organocatalyst for enantioselective hydrosilylation of ketimines. Science Bulletin, 2010, 55, 1726-1728.	1.7	6
95	HMPA-Catalyzed Transfer Hydrogenation of 3-Carbonyl Pyridines and Other N-Heteroarenes with Trichlorosilane. Molecules, 2019, 24, 401.	3.8	6
96	Seasonal dynamics of cattle grazing behaviors on contrasting landforms of a fenced ranch in northern China. Science of the Total Environment, 2020, 749, 141613.	8.0	6
97	Root Features Determine the Increasing Proportion of Forbs in Response to Degradation in Alpine Steppe, Tibetan Plateau. Frontiers in Environmental Science, 2020, 8, .	3.3	6
98	The Impact of Climate Change and Human Activity on Net Primary Production in Tibet. Polish Journal of Environmental Studies, 2016, 25, 2113-2120.	1.2	6
99	Plants and Microbes Mediate the Shift in Ecosystem Multifunctionality From Low to High Patterns Across Alpine Grasslands on the Tibetan Plateau. Frontiers in Plant Science, 2021, 12, 760599.	3.6	6
100	Context-Dependency in Relationships Between Herbaceous Plant Leaf Traits and Abiotic Factors. Frontiers in Plant Science, 2022, 13, 757077.	3.6	6
101	EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. Biochemical and Biophysical Research Communications, 2016, 479, 759-765.	2.1	5
102	EphA7 regulates claudin6 and pronephros development in Xenopus. Biochemical and Biophysical Research Communications, 2018, 495, 1580-1587.	2.1	5
103	Plant nitrogen concentration is more sensitive in response to degradation than phosphorus concentration in alpine meadow. Ecological Engineering, 2021, 169, 106323.	3.6	5
104	Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2018, 42, 1082-1093.	0.6	5
105	A feedforward circuit between KLF5 and IncRNA KPRT4 contributes to basal-like breast cancer. Cancer Letters, 2022, 534, 215618.	7.2	5
106	Soil conservation service on the Tibetan Plateau, 1984–2013. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 445-451.	0.3	4
107	Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45, 434-443.	0.6	4
108	Cushion plants as critical pioneers and engineers in alpine ecosystems across the Tibetan Plateau. Ecology and Evolution, 2021, 11, 11554-11558.	1.9	4

#	Article	IF	CITATIONS
109	Community species diversity mediates the tradeâ€off between aboveground and belowground biomass for grasses and forbs in degraded alpine meadow, Tibetan Plateau. Ecology and Evolution, 2021, 11, 13259-13267.	1.9	4
110	Functional identity of leaf dry matter content regulates community stability in the northern Tibetan grasslands. Science of the Total Environment, 2022, 838, 156150.	8.0	4
111	Methyltrichlorosilane as an Effective Activation Agent for Swern Oxidation. Synthetic Communications, 2014, 44, 2961-2965.	2.1	3
112	Rebirth after death: forest succession dynamics in response to climate change on Gongga Mountain, Southwest China. Journal of Mountain Science, 2018, 15, 1671-1681.	2.0	3
113	The altitudinal belts of subalpine virgin forest on Mt. Gongga simulated by a succession model. Journal of Mountain Science, 2014, 11, 1560-1570.	2.0	2
114	EphA7 is required for otic epithelial homeostasis by modulating Claudin6 in Xenopus. Biochemical and Biophysical Research Communications, 2020, 526, 375-380.	2.1	2
115	Varying support for abundanceâ€centre and congenericâ€competition hypotheses along elevational transects of mammals. Journal of Biogeography, 2021, 48, 616-627.	3.0	2
116	Characterization of tree shrew telomeres and telomerase. Journal of Genetics and Genomics, 2021, 48, 631-639.	3.9	2
117	Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45, 496-506.	0.6	2
118	Biologic and Abiotic Factors Regulate Dissolved Organic Nitrogen With Low and High Nutrient Concentrations on Tibetan Plateau, Respectively. Frontiers in Environmental Science, 2021, 9, .	3.3	1
119	Rationallyâ€Designed <i>Sâ€</i> Chiral Bissulfinamides as Highly Enantioselective Organocatalysts for Reduction of Ketimines, Advanced Synthesis and Catalysis, 2008, 350, 787-787	4.3	0