Paola Pinilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1803597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Major Asymmetric Dust Trap in a Transition Disk. Science, 2013, 340, 1199-1202.	12.6	492
2	Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. Astrophysical Journal, 2018, 869, 17.	4.5	337
3	Compact Disks in a High-resolution ALMA Survey of Dust Structures in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 882, 49.	4.5	139
4	ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.	8.3	114
5	A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP. Astrophysical Journal, 2015, 812, 126.	4.5	114
6	A Circumplanetary Disk around PDS70c. Astrophysical Journal Letters, 2021, 916, L2.	8.3	114
7	The newborn planet population emerging from ring-like structures in discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 453-461.	4.4	102
8	Can dead zones create structures like a transition disk?. Astronomy and Astrophysics, 2016, 596, A81.	5.1	95
9	DUST EVOLUTION CAN PRODUCE SCATTERED LIGHT GAPS IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2015, 813, L14.	8.3	70
10	The Evolution of Dust Disk Sizes from a Homogeneous Analysis of 1–10 Myr old Stars. Astrophysical Journal, 2020, 895, 126.	4.5	57
11	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – III. The evolution of substructures in massive discs at 3–5 au resolution. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2934-2953.	4.4	57
12	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	5.1	55
13	Diverse Protoplanetary Disk Morphology Produced by a Jupiter-mass Planet. Astrophysical Journal Letters, 2018, 864, L26.	8.3	50
14	Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks. Astrophysical Journal, 2020, 903, 124.	4.5	47
15	Hints on the origins of particle traps in protoplanetary disks given by the <i>M</i> _{dust} – <i>M</i> _{â<†} relation. Astronomy and Astrophysics, 2020, 635, A105.	5.1	46
16	Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Late Infall Causing Disk Misalignment and Dynamic Structures in SU Aur*. Astrophysical Journal Letters, 2021, 908, L25.	8.3	42
17	A likely planet-induced gap in the disc around T Cha. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L62-L66.	3.3	32
18	Dual-wavelength ALMA Observations of Dust Rings in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 36.	4.5	30

Paola Pinilla

#	Article	IF	CITATIONS
19	Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astronomy and Astrophysics, 2021, 645, A70.	5.1	26
20	Steepening of the 820 <i>μ</i> m continuum surface brightness profile signals dust evolution in TW Hydrae's disk. Astronomy and Astrophysics, 2016, 586, A99.	5.1	25
21	Gas Disk Sizes from CO Line Observations: A Test of Angular Momentum Evolution. Astrophysical Journal, 2022, 931, 6.	4.5	25
22	Solving Grain Size Inconsistency between ALMA Polarization and VLA Continuum in the Ophiuchus IRS 48 Protoplanetary Disk. Astrophysical Journal, 2020, 900, 81.	4.5	23
23	An Inner Disk in the Large Gap of the Transition Disk SR 24S. Astrophysical Journal, 2019, 878, 16.	4.5	22
24	Steady-state accretion in magnetized protoplanetary disks. Astronomy and Astrophysics, 2022, 658, A97.	5.1	21
25	Resolved millimeter-dust continuum cavity around the very low mass young star CIDA 1. Astronomy and Astrophysics, 2018, 615, A95.	5.1	18
26	Observational diagnostics of elongated planet-induced vortices with realistic planet formation time-scales. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3609-3621.	4.4	18
27	VORTEX FORMATION AND EVOLUTION IN PLANET HARBORING DISKS UNDER THERMAL RELAXATION. Astrophysical Journal, 2015, 810, 94.	4.5	17
28	Which planets trigger longer lived vortices: low-mass or high-mass?. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3963-3985.	4.4	16
29	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	2.7	11
30	A Tale of Two Transition Disks: ALMA Long-baseline Observations of ISO-Oph 2 Reveal Two Closely Packed Nonaxisymmetric Rings and a â^1⁄42 au Cavity. Astrophysical Journal Letters, 2020, 902, L33.	8.3	11
31	Mass determination of protoplanetary disks from dust evolution. Astronomy and Astrophysics, 2022, 657, A74.	5.1	7
32	Linking Outer Disk Pebble Dynamics and Gaps to Inner Disk Water Enrichment. Astrophysical Journal, 2021, 921, 84.	4.5	7
33	Disk Evolution Study through Imaging of Nearby Young Stars (DESTINYS): A Panchromatic View of DO Tau's Complex Kilo-astronomical-unit Environment. Astrophysical Journal, 2022, 930, 171.	4.5	7
34	Efficient dust radial drift around young intermediate-mass stars. Astronomy and Astrophysics, 2022, 662, L8.	5.1	7