Steven Branda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1803082/publications.pdf

Version: 2024-02-01

331259 5,325 36 21 h-index citations papers

g-index 41 41 41 5942 docs citations times ranked citing authors all docs

414034

32

#	Article	IF	CITATIONS
1	Biofilms: the matrix revisited. Trends in Microbiology, 2005, 13, 20-26.	3.5	1,458
2	Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11621-11626.	3.3	1,008
3	A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 2006, 59, 1229-1238.	1.2	605
4	A master regulator for biofilm formation by Bacillus subtilis. Molecular Microbiology, 2004, 55, 739-749.	1.2	506
5	Targets of the master regulator of biofilm formation in Bacillus subtilis. Molecular Microbiology, 2006, 59, 1216-1228.	1.2	256
6	Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis. Journal of Bacteriology, 2004, 186, 3970-3979.	1.0	255
7	TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. Journal of Cell Biology, 2009, 184, 215-223.	2.3	208
8	Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Communications Biology, 2018, 1, 173.	2.0	148
9	The Sgs1 Helicase Regulates Chromosome Synapsis and Meiotic Crossing Over. Current Biology, 2003, 13, 1954-1962.	1.8	143
10	Yeast and Human Frataxin Are Processed to Mature Form in Two Sequential Steps by the Mitochondrial Processing Peptidase. Journal of Biological Chemistry, 1999, 274, 22763-22769.	1.6	99
11	Prediction and Identification of New Natural Substrates of the Yeast Mitochondrial Intermediate Peptidase. Journal of Biological Chemistry, 1995, 270, 27366-27373.	1.6	98
12	A Microfluidic DNA Library Preparation Platform for Next-Generation Sequencing. PLoS ONE, 2013, 8, e68988.	1.1	63
13	Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. Human Molecular Genetics, 1999, 8, 1099-1110.	1.4	60
14	Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias. Scientific Reports, 2018, 8, 3159.	1.6	60
15	World-to-Digital-Microfluidic Interface Enabling Extraction and Purification of RNA from Human Whole Blood. Analytical Chemistry, 2014, 86, 3856-3862.	3.2	43
16	A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices. Lab on A Chip, 2015, 15, 151-158.	3.1	43
17	Fully Integrated Microfluidic Platform Enabling Automated Phosphoprofiling of Macrophage Response. Analytical Chemistry, 2009, 81, 3261-3269.	3.2	35
18	Peregrine. RNA Biology, 2013, 10, 502-515.	1.5	34

#	Article	IF	Citations
19	Microfluidically-unified cell culture, sample preparation, imaging and flow cytometry for measurement of cell signaling pathways with single cell resolution. Lab on A Chip, 2012, 12, 2823.	3.1	32
20	cDNA normalization by hydroxyapatite chromatography to enrich transcriptome diversity in RNA-seq applications. BioTechniques, 2012, 53, 373-380.	0.8	24
21	Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Biosensors and Bioelectronics, 2019, 141, 111361.	5.3	23
22	Enriching pathogen transcripts from infected samples: A capture-based approach to enhanced host–pathogen RNA sequencing. Analytical Biochemistry, 2013, 438, 90-96.	1.1	17
23	Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infection and Immunity, 2015, 83, 2672-2685.	1.0	17
24	Use of a Capture-Based Pathogen Transcript Enrichment Strategy for RNA-Seq Analysis of the Francisella Tularensis LVS Transcriptome during Infection of Murine Macrophages. PLoS ONE, 2013, 8, e77834.	1.1	17
25	The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR. PLoS ONE, 2015, 10, e0118182.	1.1	14
26	The $\langle i \rangle$ Yersinia enterocolitica $\langle i \rangle$ Ysa type III secretion system is expressed during infections both in vitro and in vivo. MicrobiologyOpen, 2013, 2, 962-975.	1.2	13
27	Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Frontiers in Cellular and Infection Microbiology, 2018, 8, 370.	1.8	10
28	A rapidly-prototyped microfluidic device for size-based nucleic acid fractionation using isotachophoresis. Analyst, The, 2017, 142, 2094-2099.	1.7	9
29	Automated analysis of mouse serum peptidome using restricted access media and nanoliquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1112-1120.	1.2	8
30	Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. IScience, 2022, 25, 103759.	1.9	5
31	Metabolomics Analysis of Bacterial Pathogen <i>Burkholderia thailandensis</i> and Mammalian Host Cells in Co-culture. ACS Infectious Diseases, 2022, 8, 1646-1662.	1.8	3
32	A Versatile Automated Platform for Micro-scale Cell Stimulation Experiments. Journal of Visualized Experiments, 2013, , .	0.2	1
33	Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6. Genome Announcements, 2016, 4, .	0.8	0
34	Genome Sequences of Burkholderia thailandensis Strains E421, E426, and DW503. Microbiology Resource Announcements, 2020, 9, .	0.3	0
35	Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Frontiers in Immunology, 2021, 12, 716676.	2.2	0
36	TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. Journal of Experimental Medicine, 2009, 206, i3-i3.	4.2	0