Pin Gao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1802817/pin-gao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73
papers

2,412
citations

26
h-index

81
ext. papers

27.5
ext. citations

26
h-index

7.5
avg, IF

5.65
L-index

#	Paper	IF	Citations
73	Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. <i>Science of the Total Environment</i> , 2012 , 421-422, 173-83	10.2	425
72	Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. <i>Chemosphere</i> , 2012 , 88, 17-24	8.4	202
71	Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. <i>Energy</i> , 2016 , 97, 238-245	7.9	159
70	Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 4663-73	5.7	94
69	Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. <i>Bioresource Technology</i> , 2011 , 102, 3645-8	11	91
68	Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. <i>Journal of Cleaner Production</i> , 2020 , 247, 119108	10.3	89
67	An Overlooked Entry Pathway of Microplastics into Agricultural Soils from Application of Sludge-Based Fertilizers. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	87
66	Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 3971-80	5.7	79
65	Simultaneous removal of aniline, antimony and chromium by ZVI coupled with HO: Implication for textile wastewater treatment. <i>Journal of Hazardous Materials</i> , 2019 , 368, 840-848	12.8	65
64	Facile formation of flexible Ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts. <i>Applied Surface Science</i> , 2018 , 454, 101-111	6.7	55
63	The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. <i>Water Research</i> , 2017 , 111, 92-	9 <mark>5</mark> 2.5	52
62	Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. <i>Separation and Purification Technology</i> , 2020 , 239, 116562	8.3	43
61	Fabrication of multiple hierarchical heterojunction Ag@AgBr/BiPO4/r-GO with enhanced visible-light-driven photocatalytic activities towards dye degradation. <i>Applied Surface Science</i> , 2018 , 445, 39-49	6.7	43
60	Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change. <i>Journal of Hazardous Materials</i> , 2018 , 354, 153-160	12.8	42
59	Comparison of chemical composition and airborne bacterial community structure in PM during haze and non-haze days in the winter in Guilin, China. <i>Science of the Total Environment</i> , 2019 , 655, 202-210	10.2	38
58	Construction of a novel BON-Br-AgBr heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity. <i>Applied Surface Science</i> , 2019 , 497, 143820	6.7	35
57	Construction of fiber-based BiVO4/SiO2/reduced graphene oxide (RGO) with efficient visible light photocatalytic activity. <i>Cellulose</i> , 2018 , 25, 1089-1101	5.5	34

56	Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants. <i>Critical Reviews in Environmental Science and Technology</i> , 2019 , 49, 1623-1	1674	33
55	Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. <i>Journal of Cleaner Production</i> , 2021 , 291, 125968	10.3	33
54	Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface. <i>Journal of Hazardous Materials</i> , 2019 , 362, 92-98	8 ^{12.8}	32
53	Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. <i>Science of the Total Environment</i> , 2021 , 755, 142428	10.2	31
52	Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw. <i>Environmental Chemistry Letters</i> , 2018 , 16, 1463-1468	13.3	30
51	Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 13536-13545	5.1	28
50	From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 10271-82	5.7	28
49	Long-term impact of a tetracycline concentration gradient on the bacterial resistance in anaerobic-aerobic sequential bioreactors. <i>Chemosphere</i> , 2018 , 205, 308-316	8.4	28
48	Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity. <i>Journal of Microbiology</i> , 2015 , 53, 371-8	3	27
47	A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria. <i>Microbial Ecology</i> , 2018 , 75, 113-122	4.4	24
46	Enhanced visible-light-induced photocatalytic disinfection of Escherichia coli by ternary Bi2WO6/TiO2/reduced graphene oxide composite materials: Insight into the underlying mechanism. <i>Advanced Powder Technology</i> , 2020 , 31, 128-138	4.6	24
45	Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 with enhanced visible-light photocatalytic performance towards dye degradation. <i>Advanced Powder Technology</i> , 2019 , 30, 1910-191	1 9 .6	22
44	Preparation of BiVO4/Bi2WO6/multi-walled carbon nanotube nanocomposites for enchaning photocatalytic performance. <i>Materials Letters</i> , 2016 , 185, 507-510	3.3	22
43	Efficient bioconversion of organic wastes to high optical activity of l-lactic acid stimulated by cathode in mixed microbial consortium. <i>Water Research</i> , 2018 , 131, 1-10	12.5	21
42	Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. <i>Environment International</i> , 2021 , 153, 106522	12.9	21
41	Recyclable and highly efficient photocatalytic fabric of Fe(III)@BiVO4/cotton via thiol-ene click reaction with visible-light response in water. <i>Advanced Powder Technology</i> , 2019 , 30, 3182-3192	4.6	20
40	Formation and Evolution of Solvent-Extracted and Nonextractable Environmentally Persistent Free Radicals in Fly Ash of Municipal Solid Waste Incinerators. <i>Environmental Science & Environmental Scie</i>	10.3	20
39	The controllable synthesis of novel heterojunction CoO/BiVO4 composite catalysts for enhancing visible-light photocatalytic property. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 578, 123608	5.1	20

38	Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. <i>Journal of Environmental Sciences</i> , 2021 , 104, 387-398	6.4	20
37	Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. <i>Chemical Engineering Journal</i> , 2020 , 382, 123052	14.7	19
36	Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 9585-9598	5.1	17
35	Comparison of aniline removal by UV/CaO and UV/HO: Degradation kinetics and mechanism. <i>Chemosphere</i> , 2020 , 255, 126983	8.4	16
34	Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process. <i>Chemical Engineering Journal</i> , 2020 , 384, 123332	14.7	16
33	Facile synthesis and characterization of Bi2MoO6/Ag3PO4/RGO composites with enhanced visible-light-driven photocatalytic activity. <i>Materials Letters</i> , 2018 , 227, 296-300	3.3	16
32	Biosorption of Chromium(VI) Ions by Deposits Produced from Chicken Feathers after Soluble Keratin Extraction. <i>Clean - Soil, Air, Water</i> , 2014 , 42, 1558-1566	1.6	15
31	V Reduction by spp. in Vanadium Mine Tailings. <i>Environmental Science & Environmental Science & Enviro</i>	421-1.44	5 4 5
30	Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 161, 237-244	7	14
29	Feather Keratin Deposits as Biosorbent for the Removal of Methylene Blue from Aqueous Solution: Equilibrium, Kinetics, and Thermodynamics Studies. <i>Water, Air, and Soil Pollution</i> , 2014 , 225, 1	2.6	14
28	Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane. <i>Chemical Engineering Journal</i> , 2020 , 398, 125604	14.7	13
27	Multigenerational effects of perfluorooctanoic acid on lipid metabolism of Caenorhabditis elegans and its potential mechanism. <i>Science of the Total Environment</i> , 2020 , 703, 134762	10.2	12
26	Preparation and characterization of sponge film made from feathers. <i>Materials Science and Engineering C</i> , 2013 , 33, 4732-8	8.3	11
25	Solvent-free in situ synthesis of flexible BiVO 4 /Bi 2 WO 6: MWCNT, PET composites with superior mineralization potential for photocatalytic degradation of organic pollutants. <i>Materials Letters</i> , 2018 , 220, 94-98	3.3	10
24	Rapid oxidation of histamine H-receptor antagonists by peroxymonosulfate during water treatment: Kinetics, products, and toxicity evaluation. <i>Water Research</i> , 2020 , 185, 116278	12.5	10
23	Degradation of p-Nitrophenol in Soil by Dielectric Barrier Discharge Plasma. <i>Water, Air, and Soil Pollution</i> , 2015 , 226, 1	2.6	9
22	Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. <i>Environmental Microbiology</i> , 2021 ,	5.2	9
21	Response of soil protozoa to acid mine drainage in a contaminated terrace. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126790	12.8	9

(2022-2020)

20	High contribution of hydrocarbon transformation during the removal of polycyclic aromatic hydrocarbons from soils, humin and clay by thermal treatment at 100\(\textit{D}\)00 \(\textit{C}\). Environmental Chemistry Letters, 2020 , 18, 923-930	13.3	7	
19	Investigation of the antimony fractions and indigenous microbiota in aerobic and anaerobic rice paddies. <i>Science of the Total Environment</i> , 2021 , 771, 145408	10.2	7	
18	Influence of Cosubstrates on Iopromide Degradation by Pseudomonas sp. I-24. <i>Water, Air, and Soil Pollution</i> , 2014 , 225, 1	2.6	6	
17	Significant effect of pH on tetracycline resistance genes reduction during sludge thermal hydrolysis treatment. <i>Waste Management</i> , 2021 , 124, 36-45	8.6	6	
16	Variation in the diazotrophic community in a vertical soil profile contaminated with antimony and arsenic. <i>Environmental Pollution</i> , 2021 , 291, 118248	9.3	5	
15	Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition. <i>Chemical Engineering Journal</i> , 2022 , 431, 134217	14.7	4	
14	Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics. <i>FEMS Microbiology Ecology</i> , 2021 , 97,	4.3	4	
13	Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 58523-58535	5.1	4	
12	Isolation and Characterization of an Erythromycin-Degrading Strain and Application for Bioaugmentation in a Biological Aerated Filter. <i>Water, Air, and Soil Pollution</i> , 2015 , 226, 1	2.6	3	
11	Formation of persistent free radicals in sludge biochar by hydrothermal carbonization. <i>Environmental Chemistry Letters</i> , 2021 , 19, 2705-2712	13.3	3	
10	Oxidation of Cefalexin by Permanganate: Reaction Kinetics, Mechanism, and Residual Antibacterial Activity. <i>Molecules</i> , 2018 , 23,	4.8	3	
9	Diversity and Metabolic Potentials of As(III)-Oxidizing Bacteria in Activated Sludge. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0176921	4.8	3	
8	Enhancement of Cr(VI) decontamination by irradiated sludge biochar in neutral conditions: Evidence of a possible role of persistent free radicals. <i>Separation and Purification Technology</i> , 2021 , 277, 119414	8.3	3	
7	Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities. <i>Science of the Total Environment</i> , 2021 , 764, 144293	10.2	2	
6	Citric acid and AMF inoculation combination-assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 67472-67	48 5 1	2	
5	Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community. <i>Microbial Ecology</i> , 2021 , 1	4.4	2	
4	Synergistic Impacts of Arsenic and Antimony Co-contamination on Diazotrophic Communities. <i>Microbial Ecology</i> , 2021 , 1	4.4	2	
3	The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands <i>Journal of Hazardous Materials</i> , 2022 , 430, 128390	12.8	0	

- Enhanced adsorption of tetracycline on polypropylene and polyethylene microplastics after anaerobically microbial-mediated aging process. *Journal of Hazardous Materials Advances*, **2022**, 6, 100075
 - 5.1 0