
C Valeria L Giosafatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802635/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A biorefinery approach for the conversion of Cynara cardunculus biomass to active films. Food Hydrocolloids, 2022, 122, 107099.	5.6	16
2	Hemp (Cannabis sativa) seed oilcake as a promising by-product for developing protein-based films: Effect of transglutaminase-induced crosslinking. Food Packaging and Shelf Life, 2022, 31, 100779.	3.3	24
3	Exploiting Potential Biotechnological Applications of Poly-Î ³ -glutamic Acid Low Molecular Weight Fractions Obtained by Membrane-Based Ultra-Filtration. Polymers, 2022, 14, 1190.	2.0	5
4	Design and characterization of poly (3-hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and their grafting in whey protein-based nanocomposites. Food Hydrocolloids, 2021, 110, 106167.	5.6	15
5	The consolidating and adhesive properties of funori: microscopy findings on common and ancient paper samples. Journal of Cultural Heritage, 2021, 48, 153-160.	1.5	2
6	Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers, 2021, 253, 117277.	5.1	43
7	Transglutaminase-mediated crosslinking of a host defence peptide derived from human apolipoprotein B and its effect on the peptide antimicrobial activity. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129803.	1.1	5
8	Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends in Food Science and Technology, 2021, 109, 259-270.	7.8	63
9	Combined lactic fermentation and enzymatic treatments affect the antigenicity of β-lactoglobulin in cow milk and soymilk-cow milk mixture. LWT - Food Science and Technology, 2021, 143, 111178.	2.5	7
10	Lignin/Carbohydrate Complex Isolated from Posidonia oceanica Sea Balls (Egagropili): Characterization and Antioxidant Reinforcement of Protein-Based Films. International Journal of Molecular Sciences, 2021, 22, 9147.	1.8	15
11	Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with Pecan (Carya illinoinensis) nut shell extract. Food Packaging and Shelf Life, 2021, 29, 100710.	3.3	20
12	Secalin enzymatically cross-linked by either papain and N-acetyl-dl-homocysteine thiolactone or transglutaminase: Improving of protein functional properties and film manufacturing. Food Hydrocolloids, 2021, 120, 106912.	5.6	7
13	Potential use of glycerol- and/or spermidine-plasticized secalin films as leaf surface coatings for sustainable plant disease management. Journal of Cleaner Production, 2021, 328, 129461.	4.6	4
14	Physicochemical and Antimicrobial Properties of Whey Protein-Based Films Functionalized with Palestinian Satureja capitata Essential Oil. Coatings, 2021, 11, 1364.	1.2	9
15	Functionality of Films from Nigella sativa Defatted Seed Cake Proteins Plasticized with Grape Juice: Use in Wrapping Sweet Cherries. Coatings, 2021, 11, 1383.	1.2	4
16	Effect of Mesoporous Silica Nanoparticles on The Physicochemical Properties of Pectin Packaging Material for Strawberry Wrapping. Nanomaterials, 2020, 10, 52.	1.9	31
17	Valorisation of Posidonia oceanica Sea Balls (Egagropili) as a Potential Source of Reinforcement Agents in Protein-Based Biocomposites. Polymers, 2020, 12, 2788.	2.0	12
18	Microbial Transglutaminase as a Tool to Improve the Features of Hydrocolloid-Based Bioplastics. International Journal of Molecular Sciences, 2020, 21, 3656.	1.8	18

C VALERIA L GIOSAFATTO

#	Article	IF	CITATIONS
19	Hydrocolloid-Based Coatings with Nanoparticles and Transglutaminase Crosslinker as Innovative Strategy to Produce Healthier Fried Kobbah. Foods, 2020, 9, 698.	1.9	10
20	Gelling behavior of bio-tofu coagulated by microbial transglutaminase combined with lactic acid bacteria. Food Research International, 2020, 134, 109200.	2.9	25
21	The Effect of Transglutaminase to Improve the Quality of Either Traditional or Pectin-Coated Falafel (Fried Middle Eastern Food). Coatings, 2019, 9, 331.	1.2	6
22	Glycerol-Plasticized Films Obtained from Whey Proteins Denatured at Alkaline pH. Coatings, 2019, 9, 322.	1.2	27
23	Structure and in vitro digestibility of grass pea (Lathyrus sativus L.) flour following transglutaminase treatment. European Food Research and Technology, 2019, 245, 1899-1905.	1.6	11
24	Effect of Mesoporous Silica Nanoparticles on Glycerol-Plasticized Anionic and Cationic Polysaccharide Edible Films. Coatings, 2019, 9, 172.	1.2	14
25	Transglutaminase Cross-Linked Edible Films and Coatings for Food Applications. , 2019, , 369-388.		10
26	Grass pea (Lathyrus sativus) flour: microstructure, physico-chemical properties and in vitro digestion. European Food Research and Technology, 2019, 245, 191-198.	1.6	11
27	Microbial transglutaminase-mediated polymerization in the presence of lactic acid bacteria affects antigenicity of soy protein component present in bio-tofu. Journal of Functional Foods, 2019, 53, 292-298.	1.6	25
28	Preparation and Characterization of Bioplastics from Grass Pea Flour Cast in the Presence of Microbial Transglutaminase. Coatings, 2018, 8, 435.	1.2	39
29	Transglutaminase Protein Substrates of Food Interest. , 2018, , 293-317.		5
30	Hydrocolloid-Based Coatings are Effective at Reducing Acrylamide and Oil Content of French Fries. Coatings, 2018, 8, 147.	1.2	34
31	All-natural bio-plastics using starch-betaglucan composites. Carbohydrate Polymers, 2017, 172, 237-245.	5.1	31
32	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	7.8	134
33	Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT - Food Science and Technology, 2017, 75, 124-130.	2.5	103
34	Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 2017, 18, 2075.	1.8	36
35	Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 2017, 18, 1026.	1.8	18
36	Stabilization of Charged Polysaccharide Film Forming Solution by Sodium Chloride: Nanoparticle Z-Average and Zeta-Potential Monitoring. Journal of Biotechnology & Biomaterials, 2016, 06, .	0.3	6

#	Article	IF	CITATIONS
37	Polyamines as new cationic plasticizers for pectin-based edible films. Carbohydrate Polymers, 2016, 153, 222-228.	5.1	28

 $_{38}$ Impact of transglutaminase treatment on properties and in vitro digestibility of white bean (Phaseolus) Tj ETQq0 0 0 grgBT /Overlock 10 T

39	Impact of dehulling on the physico-chemical properties and in vitro protein digestion of common beans (Phaseolus vulgaris L.). Food and Function, 2015, 6, 1345-1351.	2.1	27
40	Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications. Amino Acids, 2014, 46, 767-776.	1.2	22
41	Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin. Carbohydrate Polymers, 2014, 106, 200-208.	5.1	53
42	Trehaloseâ€containing hydrocolloid edible films prepared in the presence of transglutaminase. Biopolymers, 2014, 101, 931-937.	1.2	22
43	Transglutaminase-mediated modification of ovomucoid: effects on its trypsin inhibitory activity and antigenic properties. Amino Acids, 2013, 44, 285-292.	1.2	39
44	Higher susceptibility to amyloid fibril formation of the recombinant ovine prion protein modified by transglutaminase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1509-1515.	1.8	16
45	Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocolloids, 2012, 26, 261-267.	5.6	81
46	Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT - Food Science and Technology, 2011, 44, 2324-2327.	2.5	178
47	Transglutaminase Crosslinked Pectin- and Chitosan-based Edible Films: A Review. Critical Reviews in Food Science and Nutrition, 2011, 51, 223-238.	5.4	91
48	Effect of Surface Density on the Engineering Properties of High Methoxyl Pectin-Based Edible Films. Food and Bioprocess Technology, 2011, 4, 1228-1236.	2.6	49
49	Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 2010, 11, 2394-2398.	2.6	37
50	Transglutaminase-Induced Chemical and Rheological Properties of Cheese. Food Biotechnology, 2010, 24, 107-120.	0.6	40
51	Synthesis and Resistance to in Vitro Proteolysis of Transglutaminase Cross-Linked Phaseolin, the Major Storage Protein from Phaseolus vulgaris. Journal of Agricultural and Food Chemistry, 2007, 55, 4717-4721.	2.4	45
52	Extraction and Characterization ofFoeniculum vulgarePectins and Their Use for Preparing Biopolymer Films in the Presence of Phaseolin Protein. Journal of Agricultural and Food Chemistry, 2007, 55, 1237-1240.	2.4	21
53	Fennel Waste-Based Films Suitable for Protecting Cultivations. Biomacromolecules, 2007, 8, 3008-3014.	2.6	38
54	Solubility and Permeability Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or Presence of Transglutaminase. Food Biotechnology, 2005, 19, 37-49.	0.6	39