Ryuichi Shigemoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular cloning and characterization of the rat NMDA receptor. Nature, 1991, 354, 31-37.	27.8	1,738
2	Sequence and expression of a metabotropic glutamate receptor. Nature, 1991, 349, 760-765.	27.8	1,211
3	GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature, 1998, 396, 683-687.	27.8	1,092
4	Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus. Journal of Neuroscience, 1997, 17, 7503-7522.	3.6	996
5	A family of metabotropic glutamate receptors. Neuron, 1992, 8, 169-179.	8.1	992
6	Perisynaptic Location of Metabotropic Glutamate Receptors mGluR1 and mGluR5 on Dendrites and Dendritic Spines in the Rat Hippocampus. European Journal of Neuroscience, 1996, 8, 1488-1500.	2.6	775
7	Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron, 1992, 8, 811-819.	8.1	738
8	Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat. Journal of Comparative Neurology, 1992, 322, 121-135.	1.6	623
9	Immunohistochemical localization of I _h channel subunits, HCN1–4, in the rat brain. Journal of Comparative Neurology, 2004, 471, 241-276.	1.6	497
10	Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neuroscience Letters, 1993, 163, 53-57.	2.1	488
11	Metabotropic glutamate receptors. Cell and Tissue Research, 2006, 326, 483-504.	2.9	488
12	Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 1993, 335, 252-266.	1.6	477
13	Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 1995, 80, 757-765.	28.9	452
14	Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. Journal of Comparative Neurology, 1994, 347, 150-160.	1.6	429
15	Paraneoplastic Cerebellar Ataxia Due to Autoantibodies against a Glutamate Receptor. New England Journal of Medicine, 2000, 342, 21-27.	27.0	412
16	Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nature Neuroscience, 2002, 5, 1185-1193.	14.8	397
17	Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. Journal of Comparative Neurology, 1994, 347, 249-274.	1.6	396
18	mGluR1 in Cerebellar Purkinje Cells Essential for Long-Term Depression, Synapse Elimination, and Motor Coordination, Science, 2000, 288, 1832-1835.	12.6	396

#	Article	IF	CITATIONS
19	Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites. Journal of Chemical Neuroanatomy, 1997, 13, 219-241.	2.1	380
20	Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature, 1996, 381, 523-525.	27.8	378
21	Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature, 1993, 366, 687-690.	27.8	354
22	Cbln1 Is a Ligand for an Orphan Glutamate Receptor δ2, a Bidirectional Synapse Organizer. Science, 2010, 328, 363-368.	12.6	315
23	Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron, 1994, 12, 1245-1255.	8.1	311
24	Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants. Neuron, 2006, 50, 589-601.	8.1	289
25	Disruption of LGI1–linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3799-3804.	7.1	287
26	Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. Journal of Comparative Neurology, 1995, 360, 555-570.	1.6	265
27	Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron, 1993, 11, 333-342.	8.1	254
28	Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study. , 1998, 393, 332-352.		243
29	Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area. Journal of Neuroscience, 2005, 25, 6775-6786.	3.6	233
30	Asymmetrical Allocation of NMDA Receptor epsilon2 Subunits in Hippocampal Circuitry. Science, 2003, 300, 990-994.	12.6	215
31	Subcellular Localization of Metabotropic GABABReceptor Subunits GABAB1a/band GABAB2in the Rat Hippocampus. Journal of Neuroscience, 2003, 23, 11026-11035.	3.6	215
32	Nanoscale Distribution of Presynaptic Ca2+ Channels and Its Impact on Vesicular Release during Development. Neuron, 2015, 85, 145-158.	8.1	214
33	Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron, 1994, 13, 55-66.	8.1	210
34	Ablation of Cerebellar Golgi Cells Disrupts Synaptic Integration Involving GABA Inhibition and NMDA Receptor Activation in Motor Coordination. Cell, 1998, 95, 17-27.	28.9	210
35	Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 1996, 371, 567-577.	1.6	202
36	Metabotropic Glutamate Receptor Subtype 7 Ablation Causes Deficit in Fear Response and Conditioned Taste Aversion. Journal of Neuroscience, 1999, 19, 955-963.	3.6	195

#	Article	IF	CITATIONS
37	Increased Seizure Susceptibility in Mice Lacking Metabotropic Glutamate Receptor 7. Journal of Neuroscience, 2001, 21, 8734-8745.	3.6	183
38	Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nature Neuroscience, 2006, 9, 1028-1035.	14.8	181
39	Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. Journal of Comparative Neurology, 1999, 412, 1-16.	1.6	180
40	GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. European Journal of Neuroscience, 2004, 19, 552-569.	2.6	179
41	Localization of the neuromedin K receptor (NK3) in the central nervous system of the rat. Journal of Comparative Neurology, 1996, 364, 290-310.	1.6	176
42	Pre- and postsynaptic localization of a metabotropic glutamate receptor, mGluR2, in the rat brain: an immunohistochemical study with a monoclonal antibody. Neuroscience Letters, 1996, 202, 197-200.	2.1	175
43	Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19498-19503.	7.1	172
44	Tamalin, a PDZ Domain-Containing Protein, Links a Protein Complex Formation of Group 1 Metabotropic Glutamate Receptors and the Guanine Nucleotide Exchange Factor Cytohesins. Journal of Neuroscience, 2002, 22, 1280-1289.	3.6	170
45	Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Annals of Neurology, 2003, 53, 325-336.	5.3	169
46	Tissue distribution and quantitation of the mRNAs for three rat tachykinin receptors. FEBS Journal, 1990, 193, 751-757.	0.2	164
47	Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 725-730.	7.1	164
48	HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nature Neuroscience, 2011, 14, 85-92.	14.8	160
49	HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons. Journal of Neuroscience, 2004, 24, 9921-9932.	3.6	158
50	Number and Density of AMPA Receptors in Individual Synapses in the Rat Cerebellum as Revealed by SDS-Digested Freeze-Fracture Replica Labeling. Journal of Neuroscience, 2007, 27, 2135-2144.	3.6	157
51	Optogenetic Countering of Glial Acidosis Suppresses Glial Glutamate Release and Ischemic Brain Damage. Neuron, 2014, 81, 314-320.	8.1	154
52	Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neuroscience Letters, 1995, 202, 85-88.	2.1	153
53	Distinct localization of GABABreceptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. European Journal of Neuroscience, 2002, 15, 291-307.	2.6	152
54	Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 1.	2.9	151

#	Article	IF	CITATIONS
55	Number and Density of AMPA Receptors in Single Synapses in Immature Cerebellum. Journal of Neuroscience, 2005, 25, 799-807.	3.6	150
56	Presynaptic Clustering of mGluR7a Requires the PICK1 PDZ Domain Binding Site. Neuron, 2000, 28, 485-497.	8.1	144
57	Visual Properties of Transgenic Rats Harboring the Channelrhodopsin-2 Gene Regulated by the Thy-1.2 Promoter. PLoS ONE, 2009, 4, e7679.	2.5	143
58	Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20720-20725.	7.1	139
59	Compartment-Dependent Colocalization of Kir3.2-Containing K+ Channels and GABAB Receptors in Hippocampal Pyramidal Cells. Journal of Neuroscience, 2006, 26, 4289-4297.	3.6	131
60	Quantitative localisation of synaptic and extrasynaptic GABA _A receptor subunits on hippocampal pyramidal cells by freezeâ€fracture replica immunolabelling. European Journal of Neuroscience, 2010, 32, 1868-1888.	2.6	131
61	Immunocytochemical localization of rat substance P receptor in the striatum. Neuroscience Letters, 1993, 153, 157-160.	2.1	128
62	Metabotropic Glutamate Receptor 8-Expressing Nerve Terminals Target Subsets of GABAergic Neurons in the Hippocampus. Journal of Neuroscience, 2005, 25, 10520-10536.	3.6	124
63	Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO Journal, 2009, 28, 2195-2208.	7.8	124
64	Blockade of GABAB Receptors Alters the Tangential Migration of Cortical Neurons. Cerebral Cortex, 2003, 13, 932-942.	2.9	122
65	Cell type dependence and variability in the shortâ€ŧerm plasticity of EPSCs in identified mouse hippocampal interneurones. Journal of Physiology, 2002, 542, 193-210.	2.9	119
66	Connexin45-Containing Neuronal Gap Junctions in Rodent Retina Also Contain Connexin36 in Both Apposing Hemiplaques, Forming Bihomotypic Gap Junctions, with Scaffolding Contributed by Zonula Occludens-1. Journal of Neuroscience, 2008, 28, 9769-9789.	3.6	117
67	Quantitative Localization of Ca _v 2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels. Journal of Neuroscience, 2013, 33, 3668-3678.	3.6	117
68	Immunolocalization of metabotropic glutamate receptor 1? (mGluR1?) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus, 2004, 14, 193-215.	1.9	116
69	Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity. Neuron, 2012, 73, 1159-1172.	8.1	114
70	Selective Blockade of P/Q-Type Calcium Channels by the Metabotropic Glutamate Receptor Type 7 Involves a Phospholipase C Pathway in Neurons. Journal of Neuroscience, 2000, 20, 7896-7904.	3.6	112
71	Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse. Neuron, 2014, 84, 152-163.	8.1	111
72	Expression of the mRNA for the rat NMDA receptor (NMDAR1) in the sensory and autonomic ganglion neurons. Neuroscience Letters, 1992, 144, 229-232.	2.1	104

#	Article	lF	CITATIONS
73	Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell and Tissue Research, 2003, 313, 29-35.	2.9	104
74	High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Current Opinion in Neurobiology, 2007, 17, 387-393.	4.2	103
75	The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. Journal of Physiology, 2008, 586, 3893-3915.	2.9	103
76	Input-Specific Intrasynaptic Arrangements of Ionotropic Glutamate Receptors and Their Impact on Postsynaptic Responses. Journal of Neuroscience, 2009, 29, 12896-12908.	3.6	102
77	Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission. Cerebral Cortex, 2015, 25, 3699-3712.	2.9	102
78	Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Research, 1995, 674, 336-340.	2.2	101
79	Increased social interaction in mice deficient of the striatal medium spiny neuronâ€specific phosphodiesterase 10A2. Journal of Neurochemistry, 2008, 105, 546-556.	3.9	100
80	Enrichment of mGluR7a in the Presynaptic Active Zones of GABAergic and Non-GABAergic Terminals on Interneurons in the Rat Somatosensory Cortex. Cerebral Cortex, 2002, 12, 961-974.	2.9	98
81	Immunohistochemical study of a rat membrane protein which induces a selective potassium permeation: Its localization in the apical membrane portion of epithelial cells. Journal of Membrane Biology, 1990, 113, 39-47.	2.1	97
82	Differential expression of calretinin and metabotropic glutamate receptor mGluR1? defines subsets of unipolar brush cells in mouse cerebellum. Journal of Comparative Neurology, 2002, 451, 189-199.	1.6	97
83	Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. Journal of Comparative Neurology, 2005, 489, 195-216.	1.6	89
84	Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn: an electron microscope study in the rat. Neuroscience Letters, 1997, 223, 153-156.	2.1	88
85	Quantitative Analysis and Subcellular Distribution of mRNA and Protein Expression of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels throughout Development in Rat Hippocampus. Cerebral Cortex, 2006, 17, 702-712.	2.9	88
86	Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development (Cambridge), 2014, 141, 1671-1682.	2.5	86
87	High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. European Journal of Neuroscience, 2003, 17, 2503-2520.	2.6	85
88	Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell and Tissue Research, 1997, 289, 1-9.	2.9	84
89	Immunocytochemical localization of the alpha1A subunit of the P/Q-type calcium channel in the rat cerebellum. European Journal of Neuroscience, 2004, 19, 2169-2178.	2.6	83
90	Developing oligodendrocytes express functional GABABreceptors that stimulate cell proliferation and migration. Journal of Neurochemistry, 2007, 100, 822-840.	3.9	81

#	Article	IF	CITATIONS
91	Substance P receptor-immunoreactive neurons in the rat neostriatum are segregated into somatostatinergic and cholinergic aspiny neurons. Brain Research, 1993, 631, 297-303.	2.2	80
92	Quantitative Regional and Ultrastructural Localization of the Ca _v 2.3 Subunit of R-type Calcium Channel in Mouse Brain. Journal of Neuroscience, 2012, 32, 13555-13567.	3.6	78
93	The Inhibition of Clutamate Release by Metabotropic Clutamate Receptor 7 Affects Both [Ca2+] and cAMP. Journal of Biological Chemistry, 2002, 277, 14092-14101.	3.4	75
94	Numbers of presynaptic Ca ²⁺ channel clusters match those of functionally defined vesicular docking sites in single central synapses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5246-E5255.	7.1	75
95	Distribution of metabotropic GABA receptor subunits GABAB1a/band GABAB2in the rat hippocampus during prenatal and postnatal development. Hippocampus, 2004, 14, 836-848.	1.9	74
96	Presynaptic localization of a metabotropic glutamate receptor, mGluR4a, in the cerebellar cortex: a light and electron microscope study in the rat. Neuroscience Letters, 1996, 207, 199-202.	2.1	73
97	NMDA Receptors in Hippocampal GABAergic Synapses and Their Role in Nitric Oxide Signaling. Journal of Neuroscience, 2011, 31, 5893-5904.	3.6	72
98	Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nature Communications, 2017, 8, 1103.	12.8	71
99	Metabotropic glutamate receptors are associated with non-synaptic appendages of unipolar brush cells in rat cerebellar cortex and cochlear nuclear complex. Journal of Neurocytology, 1998, 27, 303-327.	1.5	68
100	Selective Gating of Glutamatergic Inputs to Excitatory Neurons of Amygdala by Presynaptic GABAb Receptor. Neuron, 2009, 61, 917-929.	8.1	68
101	Retrograde Synaptic Signaling Mediated by K+ Efflux through Postsynaptic NMDA Receptors. Cell Reports, 2013, 5, 941-951.	6.4	68
102	Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum. European Journal of Neuroscience, 2005, 21, 2073-2082.	2.6	67
103	Bioimaging with Twoâ€Photonâ€Induced Luminescence from Triangular Nanoplates and Nanoparticle Aggregates of Gold. Advanced Materials, 2009, 21, 2309-2313.	21.0	67
104	Mice with Altered Myelin Proteolipid Protein Gene Expression Display Cognitive Deficits Accompanied by Abnormal Neuron-Glia Interactions and Decreased Conduction Velocities. Journal of Neuroscience, 2009, 29, 8363-8371.	3.6	66
105	mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. European Journal of Neuroscience, 1999, 11, 663-672.	2.6	65
106	Localization of HCN1 Channels to Presynaptic Compartments: Novel Plasticity That May Contribute to Hippocampal Maturation. Journal of Neuroscience, 2007, 27, 4697-4706.	3.6	65
107	Subcellular compartmentâ€specific molecular diversity of pre―and postâ€synaptic GABA _B â€activated GIRK channels in Purkinje cells. Journal of Neurochemistry, 2009, 110, 1363-1376.	3.9	65
108	Metabotropic glutamate receptor subtypes in axon terminals of projection fibers from the main and accessory olfactory bulbs: A light and electron microscopic immunohistochemical study in the rat. , 1998, 393, 493-504.		64

#	Article	IF	CITATIONS
109	Numbers, Densities, and Colocalization of AMPA- and NMDA-Type Glutamate Receptors at Individual Synapses in the Superficial Spinal Dorsal Horn of Rats. Journal of Neuroscience, 2008, 28, 9692-9701.	3.6	64
110	Rightâ€hemispheric dominance of spatial memory in splitâ€brain mice. Hippocampus, 2012, 22, 117-121.	1.9	64
111	Expression of mRNAs of I-AP4-sensitive metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7) in the rat retina. Neuroscience Letters, 1994, 171, 52-54.	2.1	60
112	Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Molecular Brain, 2014, 7, 76.	2.6	59
113	The density of AMPA receptors activated by a transmitter quantum at the climbing fibreâ€Purkinje cell synapse in immature rats. Journal of Physiology, 2003, 549, 75-92.	2.9	58
114	Netrin-G/NGL Complexes Encode Functional Synaptic Diversification. Journal of Neuroscience, 2014, 34, 15779-15792.	3.6	58
115	Largeâ€conductance calciumâ€activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. Journal of Comparative Neurology, 2009, 515, 215-230.	1.6	56
116	Selective Participation of Somatodendritic HCN Channels in Inhibitory But Not Excitatory Synaptic Integration in Neurons of the Subthalamic Nucleus. Journal of Neuroscience, 2010, 30, 16025-16040.	3.6	56
117	Cell type–specific spatial and functional coupling between mammalian brain Kv2.1 K ⁺ channels and ryanodine receptors. Journal of Comparative Neurology, 2014, 522, 3555-3574.	1.6	56
118	Presynaptic localization of a metabotropic glutamate receptor, mGluR8, in the rhinencephalic areas: a light and electron microscope study in the rat. Neuroscience Letters, 1996, 207, 61-64.	2.1	55
119	Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. European Journal of Neuroscience, 2004, 19, 2727-2740.	2.6	55
120	Expression of the Metabotropic Glutamate Receptor, mGluR4a, in the Taste Hairs of Taste Buds in Rat Gustatory Papillae Archives of Histology and Cytology, 2002, 65, 91-96.	0.2	54
121	The GABA _{B1a} Isoform Mediates Heterosynaptic Depression at Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2009, 29, 1414-1423.	3.6	54
122	Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E194-202.	7.1	54
123	Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E188-93.	7.1	54
124	Distribution of trigeminothalamic and spinothalamic-tract neurons showing substance P receptor-like immunoreactivity in the rat. Brain Research, 1996, 719, 207-212.	2.2	53
125	Distribution of trigeminohypothalamic and spinohypothalamic tract neurons displaying substance P receptor-like immunoreactivity in the rat. , 1997, 378, 508-521.		53
126	The SK2-long isoform directs synaptic localization and function of SK2-containing channels. Nature Neuroscience, 2011, 14, 744-749.	14.8	52

#	Article	IF	CITATIONS
127	Substance P receptor (NK1)-immunoreactive neurons projecting to the periaqueductal gray: distribution in the spinal trigeminal nucleus and the spinal cord of the rat. Neuroscience Research, 1998, 30, 219-225.	1.9	51
128	Differential localization and regulation of stargazin-like protein, γ-8 and stargazin in the plasma membrane of hippocampal and cortical neurons. Neuroscience Research, 2006, 55, 45-53.	1.9	51
129	HCN2 and HCN4 Isoforms Self-assemble and Co-assemble with Equal Preference to Form Functional Pacemaker Channels. Journal of Biological Chemistry, 2007, 282, 22900-22909.	3.4	51
130	Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat: A light and electron microscope study. Journal of Comparative Neurology, 1998, 402, 181-196.	1.6	50
131	GABABand CB1cannabinoid receptor expression identifies two types of septal cholinergic neurons. European Journal of Neuroscience, 2005, 21, 3034-3042.	2.6	49
132	Mechanisms Underlying Signal Filtering at a Multisynapse Contact. Journal of Neuroscience, 2012, 32, 2357-2376.	3.6	49
133	Immunohistochemical localization of a metabotropic glutamate receptor, mGluR7, in ganglion neurons of the rat; with special reference to the presence in glutamatergic ganglion neurons. Neuroscience Letters, 1996, 204, 9-12.	2.1	48
134	Target-Cell-Specific Left-Right Asymmetry of NMDA Receptor Content in Schaffer Collateral Synapses in A1/NR2A Knock-Out Mice. Journal of Neuroscience, 2005, 25, 9213-9226.	3.6	47
135	Functional presynaptic HCN channels in the rat globus pallidus. European Journal of Neuroscience, 2007, 25, 2081-2092.	2.6	46
136	Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held. Journal of Physiology, 2013, 591, 219-239.	2.9	45
137	The relationship between neurokinin-1 receptor and substance P in the medullary dorsal horn. Neuroscience Research, 2000, 36, 327-334.	1.9	43
138	Localization of the GABABreceptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. Journal of Comparative Neurology, 2004, 475, 36-46.	1.6	43
139	Fluorescent Arc/Arg3.1 indicator mice: A versatile tool to study brain activity changes in vitro and in vivo. Journal of Neuroscience Methods, 2009, 184, 25-36.	2.5	43
140	Differential GABAB-Receptor-Mediated Effects in Perisomatic- and Dendrite-Targeting Parvalbumin Interneurons. Journal of Neuroscience, 2013, 33, 7961-7974.	3.6	43
141	Metabolism of glutamate and ammonia in astrocyte: an immunocytochemical study. Brain Research, 1988, 457, 160-164.	2.2	42
142	Long-term potentiation of mGluR1 activity by depolarization-induced Homer1a in mouse cerebellar Purkinje neurons. European Journal of Neuroscience, 2003, 17, 1023-1032.	2.6	41
143	Association of Rgs7/Gβ5 complexes with girk channels and GABA _B receptors in hippocampal CA1 pyramidal neurons. Hippocampus, 2013, 23, 1231-1245.	1.9	40
144	Ventro-dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation. Current Biology, 2021, 31, 25-38.e5.	3.9	40

#	Article	IF	CITATIONS
145	Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and Aβ generation in Alzheimer's disease. Molecular Neurodegeneration, 2012, 7, 50.	10.8	39
146	Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens. Journal of Structural Biology, 2009, 168, 476-484.	2.8	37
147	Expression of c-fos protein in substance P receptor-like immunoreactive neurons in response to noxious stimuli on the urinary bladder: an observation in the lumbosacral cord segments of the rat. Neuroscience Letters, 1995, 198, 139-142.	2.1	36
148	Cell type-dependent expression of HCN1 in the main olfactory bulb. European Journal of Neuroscience, 2003, 18, 344-354.	2.6	36
149	Right Isomerism of the Brain in Inversus Viscerum Mutant Mice. PLoS ONE, 2008, 3, e1945.	2.5	36
150	Developmental profile of SK2 channel expression and function in CA1 neurons. Hippocampus, 2012, 22, 1467-1480.	1.9	35
151	Neural substrates for the distinct effects of presynaptic group III metabotropic glutamate receptors on extinction of contextual fear conditioning in mice. Neuropharmacology, 2013, 66, 274-289.	4.1	35
152	Presynaptic α ₂ δ subunits are key organizers of glutamatergic synapses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
153	Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology, 2020, 528, 1003-1027.	1.6	33
154	Subtype-specific Expression of Group III Metabotropic Glutamate Receptors and Ca2+ Channels in Single Nerve Terminals. Journal of Biological Chemistry, 2002, 277, 47796-47803.	3.4	32
155	HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. ELife, 2019, 8, .	6.0	32
156	mGluR7-like receptor and GABAB receptor activation enhance neurotoxic effects of N-methyl-d-aspartate in cultured mouse striatal GABAergic neurones. Neuropharmacology, 1999, 38, 1631-1640.	4.1	31
157	Relationship between neurokinin-1 receptor and substance P in the striatum: Light and electron microscopic immunohistochemical study in the rat. , 2000, 418, 156-163.		31
158	Co-expression of Metabotropic Glutamate Receptor 7 and N-type Ca2+ Channels in Single Cerebrocortical Nerve Terminals of Adult Rats. Journal of Biological Chemistry, 2003, 278, 23955-23962.	3.4	31
159	Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression. Current Opinion in Neurobiology, 2012, 22, 446-452.	4.2	31
160	Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions. Frontiers in Cellular Neuroscience, 2020, 14, 63.	3.7	31
161	Cajal-Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors. European Journal of Neuroscience, 2001, 13, 1147-1154.	2.6	30
162	Collateral projections from striatonigral neurons to substance P receptor- expressing intrinsic neurons in the striatum of the rat. , 1997, 388, 250-264.		29

#	Article	IF	CITATIONS
163	Localization of Endothelin Receptor Messenger Ribonucleic Acid in the Rat Ovary and Fallopian Tube by in Situ Hybridization. Biology of Reproduction, 1993, 49, 675-680.	2.7	28
164	Bidirectional Interactions between H-Channels and Na+-K+ Pumps in Mesencephalic Trigeminal Neurons. Journal of Neuroscience, 2004, 24, 3694-3702.	3.6	28
165	Dendritic <i>I</i> _h Ensures High-Fidelity Dendritic Spike Responses of Motion-Sensitive Neurons in Rat Superior Colliculus. Journal of Neurophysiology, 2008, 99, 2066-2076.	1.8	28
166	Light and electron microscopic study of the distribution of substance P-immunoreactive fibers and neurokinin-1 receptors in the skin of the rat lower lip. Journal of Comparative Neurology, 2001, 432, 466-480.	1.6	27
167	A CaV2.1 calcium channel mutationrockerreduces the number of postsynaptic AMPA receptors in parallel fiber-Purkinje cell synapses. European Journal of Neuroscience, 2006, 24, 2993-3007.	2.6	27
168	Differential association of GABAB receptors with their effector ion channels in Purkinje cells. Brain Structure and Function, 2018, 223, 1565-1587.	2.3	27
169	Modulation of synaptic transmission and differential localisation of mGlus in cultured hippocampal autapses. Neuropharmacology, 1999, 38, 1553-1567.	4.1	26
170	Trigeminoparabrachial projection neurons showing substance P receptor-like immunoreactivity in the rat. Neuroscience Research, 1995, 23, 415-418.	1.9	25
171	Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. Journal of Comparative Neurology, 2010, 518, 4771-4791.	1.6	25
172	The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Structure and Function, 2017, 222, 3375-3393.	2.3	25
173	Expression of group II metabotropic glutamate receptors in rat gustatory papillae. Cell and Tissue Research, 2007, 328, 57-63.	2.9	24
174	Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning. Neuron, 2019, 104, 781-794.e4.	8.1	24
175	Bidirectional Regulation of Neurite Elaboration by Alternatively Spliced Metabotropic Glutamate Receptor 5 (mGluR5) Isoforms. Molecular and Cellular Neurosciences, 2001, 17, 957-972.	2.2	23
176	Cellular Localization of GABA and GABAB Receptor Subunit Proteins During Spermiogenesis in Rat Testis. Journal of Andrology, 2005, 26, 485-493.	2.0	23
177	Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry. Journal of Physiology, 2013, 591, 4777-4791.	2.9	23
178	Direct projections of non-pyramidal neurons of Ammon's horn to the supramammillary region in the cat. Brain Research, 1988, 460, 173-177.	2.2	22
179	Subcellular distribution of α1G subunit of Tâ€ŧype calcium channel in the mouse dorsal lateral geniculate nucleus. Journal of Comparative Neurology, 2010, 518, 4362-4374.	1.6	22
180	Differential subcellular localization of SK3 ontaining channels in the hippocampus. European Journal of Neuroscience, 2014, 39, 883-892.	2.6	22

Кушсні Shigemoto

#	Article	IF	CITATIONS
181	Reduction in the neuronal surface of post and presynaptic GABA _B receptors in the hippocampus in a mouse model of Alzheimer's disease. Brain Pathology, 2020, 30, 554-575.	4.1	22
182	Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 2459.	4.1	21
183	Coassembly and Coupling of SK2 Channels and mGlu ₅ Receptors. Journal of Neuroscience, 2014, 34, 14793-14802.	3.6	20
184	Subtype-specific coupling with ADP-ribosyl cyclase of metabotropic glutamate receptors in retina, cervical superior ganglion and NG108-15 cells. Journal of Neurochemistry, 2003, 85, 1148-1158.	3.9	19
185	Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies. PLoS ONE, 2016, 11, e0164037.	2.5	19
186	KCTD12 Auxiliary Proteins Modulate Kinetics of GABA _B Receptor-Mediated Inhibition in Cholecystokinin-Containing Interneurons. Cerebral Cortex, 2017, 27, bhw090.	2.9	19
187	RIM-Binding Protein 2 Organizes Ca ²⁺ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse. Journal of Neuroscience, 2021, 41, 7742-7767.	3.6	19
188	Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus. Neuroscience, 2007, 144, 495-508.	2.3	18
189	Localization of group II and III metabotropic glutamate receptors at pre―and postsynaptic sites of inner hair cell ribbon synapses. FASEB Journal, 2019, 33, 13734-13746.	0.5	18
190	Immunolocalization of multiple membrane proteins on a carbon replica with STEM and EDX. Ultramicroscopy, 2010, 110, 366-374.	1.9	17
191	Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and <scp>GABA</scp> ergic synapses in the rodent cerebellar cortex. European Journal of Neuroscience, 2015, 41, 157-167.	2.6	17
192	The role of hippocampal mossy cells in novelty detection. Neurobiology of Learning and Memory, 2021, 183, 107486.	1.9	17
193	The distribution of substance P receptor (NK1)-like immunoreactive neurons in the newborn and adult human spinal cord. Neuroscience Letters, 1999, 266, 133-136.	2.1	16
194	Target―and inputâ€dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. Journal of Comparative Neurology, 2014, 522, 4023-4042.	1.6	16
195	GABAergic synapses upon neurons expressing substance P receptors in the nucleus of the solitary tract: an immunocytochemical electron microscope study in the rat. Neuroscience Letters, 1996, 210, 49-52.	2.1	15
196	Differential expression patterns of mGluR1α in monkey nigral dopamine neurons. NeuroReport, 2003, 14, 947-950.	1.2	14
197	Molecular Characterization of Mammalian Tachykinin Receptors and a Possible Epithelial Potassium Channel. , 1990, 46, 59-84.		13
198	Immunohistochemical localization of substance P receptor in the superior colliculus. A light and electron microscope study in the rat. Neuroscience Letters, 1994, 166, 135-138.	2.1	13

#	Article	IF	CITATIONS
199	SK2 Channels Associate With mGlu1α Receptors and CaV2.1 Channels in Purkinje Cells. Frontiers in Cellular Neuroscience, 2018, 12, 311.	3.7	13
200	Deep Learning-Assisted High-Throughput Analysis of Freeze-Fracture Replica Images Applied to Glutamate Receptors and Calcium Channels at Hippocampal Synapses. International Journal of Molecular Sciences, 2020, 21, 6737.	4.1	13
201	Functional Deficiency of MHC Class I Enhances LTP and Abolishes LTD in the Nucleus Accumbens of Mice. PLoS ONE, 2014, 9, e107099.	2.5	13
202	Smooth muscle cells are the site of neurokinin-1 receptor localization in the arterial supply of the rat sciatic nerve. Neuroscience Letters, 1999, 259, 119-122.	2.1	12
203	Immunocytochemical localization of GABAB receptors in mesencephalic trigeminal nucleus neurons in the rat. Neuroscience Letters, 2001, 315, 93-97.	2.1	12
204	Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. Journal of Comparative Neurology, 2007, 500, 908-922.	1.6	12
205	The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. Journal of Neurochemistry, 2007, 103, 2314-2326.	3.9	12
206	GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. ELife, 2021, 10, .	6.0	12
207	Differential expression patterns of K ⁺ /Cl ^{â^'} cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. Journal of Comparative Neurology, 2015, 523, 1967-1983.	1.6	10
208	Superâ€resolution structural analysis of dendritic spines using threeâ€dimensional structured illumination microscopy in cleared mouse brain slices. European Journal of Neuroscience, 2018, 47, 1033-1042.	2.6	10
209	Differential expression patterns of mGluR1α in monkey nigral dopamine neurons. NeuroReport, 2003, 14, 947-950.	1.2	9
210	Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling. IScience, 2019, 22, 256-268.	4.1	9
211	Morphological evidence for GABA/glycine-cocontaining terminals in synaptic contact with neurokinin-1 receptor-expressing neurons in the sacral dorsal commissural nucleus of the rat. Neuroscience Letters, 2005, 388, 144-148.	2.1	8
212	Virusâ€mediated swapping of zolpidemâ€insensitive with zolpidemâ€sensitive GABA _A receptors in cortical pyramidal cells. Journal of Physiology, 2012, 590, 1517-1534.	2.9	8
213	The Number and Distinct Clustering Patterns of Voltage-Gated Calcium Channels in Nerve Terminals. Frontiers in Neuroanatomy, 2022, 16, 846615.	1.7	8
214	Optimized Reaction Pair of the CysHis Tag and Ni(II)-NTA Probe for Highly Selective Chemical Labeling of Membrane Proteins. Bulletin of the Chemical Society of Japan, 2019, 92, 995-1000.	3.2	7
215	Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. Journal of Comparative Neurology, 1999, 412, 1-16.	1.6	7
216	Direct projections from the subthalamic nucleus of Luys to the spinal cord in the Japanese monkey. Neuroscience Letters, 1988, 89, 13-18.	2.1	6

#	Article	IF	CITATIONS
217	Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi. Cell and Tissue Research, 2010, 342, 243-259.	2.9	6
218	Super-resolution Microscopical Localization of Dopamine Receptors 1 and 2 in Rat Hippocampal Synaptosomes. Molecular Neurobiology, 2018, 55, 4857-4869.	4.0	6
219	Patchy distribution of substance P receptor immunoreactivity in the developing rat striatum. Developmental Brain Research, 1996, 95, 107-117.	1.7	5
220	Immunogold Protein Localization on Grid-Glued Freeze-Fracture Replicas. Methods in Molecular Biology, 2016, 1474, 203-216.	0.9	5
221	Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study. Journal of Comparative Neurology, 1998, 393, 332-352.	1.6	5
222	PirB regulates asymmetries in hippocampal circuitry. PLoS ONE, 2017, 12, e0179377.	2.5	5
223	Direct projections from Ammon's horn to the rostral raphe regions in the brainstem of the cat. Brain Research, 1989, 479, 157-161.	2.2	4
224	The genetic encoded toolbox for electron microscopy and connectomics. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e288.	5.9	4
225	Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. ELife, 2020, 9, .	6.0	3
226	Relationship between neurokinin-1 receptor and substance P in the striatum: Light and electron microscopic immunohistochemical study in the rat. Journal of Comparative Neurology, 2000, 418, 156.	1.6	2
227	Distribution of three tachykinin receptor mRNAS in rat brain. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1991, 14, S111.	0.0	1
228	Metabotropic glutamate receptor subtypes in axon terminals of projection fibers from the main and accessory olfactory bulbs: A light and electron microscopic immunohistochemical study in the rat. Journal of Comparative Neurology, 1998, 393, 493-504.	1.6	1
229	Patchy Distribution of Substance P Receptor Immunoreactivity in Developing Rat Striatum. Advances in Behavioral Biology, 1996, , 113-117.	0.2	1
230	High-Resolution Localization of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL). Neuromethods, 2016, , 233-245.	0.3	1
231	OUP accepted manuscript. Microscopy (Oxford, England), 2022, 71, i72-i80.	1.5	1
232	BK channels in Purkinje cell plasma membranes are concentrated in plasmerosomes at sites of hypolemmal cisternae. BMC Pharmacology, 2008, 8, .	0.4	0
233	Developmental clustering of glutamate receptors in the Calyx of Held Synapses. Neuroscience Research, 2009, 65, S142.	1.9	0
234	In vivo remodeling of postsynaptic glutamate receptor organization revealed by freeze-fracture replica labeling. Neuroscience Research, 2009, 65, S144.	1.9	0

#	Article	IF	CITATIONS
235	Analysis of neuroligin-3 knock-in mice relevant to autism spectrum disorders. Neuroscience Research, 2009, 65, S257.	1.9	ο
236	Immunohistochemical localization of kainate receptors, GluK2/3 (GluR6/7) and GluK5 (KA2), in the mouse hippocampus. Neuroscience Research, 2010, 68, e230-e231.	1.9	0
237	Localization of voltage-dependent calcium channel subunit alpha 1A (Cav2.1) in the rat cerebellum. Neuroscience Research, 2010, 68, e110.	1.9	Ο
238	The adherens junction serves as a switch for neurogenesis by facilitating Notch–Delta interaction in vertebrate. Neuroscience Research, 2011, 71, e51.	1.9	0
239	Ultrastructural localization analysis of septins in mammalian nervous system. Neuroscience Research, 2011, 71, e118.	1.9	Ο
240	Right-hemispheric dominance of dentate granular cell c-fos expression after spatial exploration in split-brain mice. Neuroscience Research, 2011, 71, e179.	1.9	0
241	Downregulation of a Metabotropic Glutamate Receptor in the Parkinsonian Basal Ganglia. , 2005, , 255-263.		0