Younes Noorollahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1802198/publications.pdf

Version: 2024-02-01

		101384	118652
87	4,157	36	62
papers	citations	h-index	g-index
00	00	00	2202
90	90	90	3392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Solar-based multi-generation hybrid energy system; simulation and experimental study. International Journal of Ambient Energy, 2022, 43, 2963-2975.	1.4	17
2	Modelling and optimisation of long-term forecasting of electricity demand in oil-rich area, South Iran. International Journal of Ambient Energy, 2022, 43, 4612-4622.	1.4	4
3	A novel design of switched boost action based multiport converter using dsPIC controller for renewable energy applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 75-90.	1.2	15
4	A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach. Renewable Energy, 2022, 186, 89-104.	4.3	83
5	Thermodynamic modeling of an ORC power plant for abandoned geothermal well., 2022,, 239-253.		O
6	A scenario-based approach for optimal operation of energy hub under different schemes and structures. Energy, 2022, 251, 123740.	4.5	18
7	Abandoned wells multigeneration system: promising zero CO2 emission geothermal energy system. International Journal of Energy and Environmental Engineering, 2022, 13, 1237-1246.	1.3	2
8	Toward comprehensive zero energy building definitions: a literature review and recommendations. International Journal of Sustainable Energy, 2021, 40, 120-148.	1.3	38
9	Investigation of single-storey residential green roof contribution to buildings energy demand reduction in different climate zones of Iran. International Journal of Green Energy, 2021, 18, 100-110.	2.1	11
10	An unsaturated three-dimensional model of fluid flow and heat transfer in NW Sabalan geothermal reservoir. Geothermics, 2021, 89, 101966.	1.5	9
11	Solar energy for sustainable heating and cooling energy system planning in arid climates. Energy, 2021, 218, 119421.	4.5	38
12	Sustainable energy system modelling with a high renewable energy penetration rate for rich oil regions. International Journal of Sustainable Energy, 2021, 40, 494-513.	1.3	4
13	Analysis of Turbulent Flow on Tidal Stream Turbine by RANS and BEM. CMES - Computer Modeling in Engineering and Sciences, 2021, 127, 515-532.	0.8	1
14	Biofuel for energy self-sufficiency in agricultural sector of Iran. Sustainable Energy Technologies and Assessments, 2021, 44, 101069.	1.7	3
15	Replacing natural gas with solar and wind energy to supply the thermal demand of buildings in Iran: A simulation approach. Sustainable Energy Technologies and Assessments, 2021, 44, 101047.	1.7	14
16	Distributed wind and solar power for grid sustainability and emission reduction. Environmental Progress and Sustainable Energy, 2021, 40, e13686.	1.3	4
17	The synergy of renewable energies for sustainable energy systems development in oil-rich nations; case of Iran. Renewable Energy, 2021, 173, 561-568.	4.3	17
18	Energy transition in petroleum rich nations: Case study of Iran. Smart Energy, 2021, 3, 100026.	2.6	25

#	Article	IF	Citations
19	Future energy planning to maximize renewable energy share for the south Caspian Sea climate. Renewable Energy, 2021, 175, 660-675.	4.3	23
20	Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: a case study. International Journal of Low-Carbon Technologies, 2021, 16, 577-591.	1.2	5
21	Decrease in CO ₂ emission per capita as a result of the reduction in power grid losses in Iran. International Journal of Ambient Energy, 2020, 41, 8-18.	1.4	15
22	Sustainable development using renewable energy technology. Renewable Energy, 2020, 146, 2430-2437.	4.3	351
23	Numerical analysis of a small ducted wind turbine for performance improvement. International Journal of Sustainable Energy, 2020, 39, 290-307.	1.3	11
24	Curie Point Depth Estimations for Northwest Iran Through Spectral Analysis of Aeromagnetic Data for Geothermal Resources Exploration. Natural Resources Research, 2020, 29, 2307-2332.	2.2	7
25	Fuzzy-based scheduling of wind integrated multi-energy systems under multiple uncertainties. Sustainable Energy Technologies and Assessments, 2020, 37, 100602.	1.7	36
26	Hybrid fuzzy decision making approach for wind-powered pumped storage power plant site selection: A case study. Sustainable Energy Technologies and Assessments, 2020, 42, 100838.	1.7	23
27	Optimization of Power and Levelized Cost for Shrouded Small Wind Turbine. Inventions, 2020, 5, 59.	1.3	5
28	Sustainable Energy System Planning for an Industrial Zone by Integrating Electric Vehicles as Energy Storage. Journal of Energy Storage, 2020, 30, 101553.	3.9	44
29	Stochastic Operation of a Solar-Powered Smart Home: Capturing Thermal Load Uncertainties. Sustainability, 2020, 12, 5089.	1.6	11
30	In pursuit of a replacement for conventional high-density polyethylene tubes in ground source heat pumps from their composites – A comparative study. Geothermics, 2020, 87, 101819.	1.5	6
31	Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Reviews, 2020, 29, 100478.	3.3	104
32	A Spatial-Based Integration Model for Regional Scale Solar Energy Technical Potential. Sustainability, 2020, 12, 1890.	1.6	8
33	Application of nature inspired optimization algorithms in optimum positioning of pump-as-turbines in water distribution networks. Neural Computing and Applications, 2019, 31, 7489-7499.	3.2	13
34	A detailed investigation and performance optimization of a photovoltaic panel integrated with a reflecting mirror. Applied Thermal Engineering, 2019, 160, 114074.	3.0	11
35	Designing and optimization of solar assisted ground source heat pump system to supply heating, cooling and hot water demands. Geothermics, 2019, 82, 212-231.	1.5	76
36	Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future. Energy Conversion and Management, 2019, 200, 112107.	4.4	47

#	Article	IF	CITATIONS
37	Solar assisted ground source heat pump systems – A review. Applied Thermal Engineering, 2019, 163, 114351.	3.0	83
38	Ground source heat pump status and supportive energy policies in Japan. Energy Procedia, 2019, 158, 3614-3619.	1.8	12
39	Cascading uses of geothermal energy for a sustainable energy supply for Meshkinshahr City, Northwest, Iran. Geothermics, 2019, 79, 152-163.	1.5	32
40	Numerical simulation for obtaining optimal impeller's blade parameters of a centrifugal pump for high-viscosity fluid pumping. Sustainable Energy Technologies and Assessments, 2019, 34, 16-26.	1.7	36
41	Modelling of heat supply for natural gas pressure reduction station using geothermal energy. International Journal of Sustainable Energy, 2019, 38, 773-793.	1.3	5
42	Theoretical and technical potential evaluation of solar power generation in Iran. Renewable Energy, 2019, 138, 1250-1261.	4.3	78
43	A three-dimensional numerical model to simulate Iranian NW Sabalan geothermal system. Geothermics, 2019, 77, 42-61.	1.5	25
44	Investigating the Effect of Soil Type and Moisture on the Performance of a Ground Source Heat Pump System Used for a Greenhouse in Iran. Journal of Thermal Science and Engineering Applications, 2019, 11, .	0.8	6
45	Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics, 2019, 77, 257-266.	1.5	74
46	An Introduction to Smart Energy Systems and Definition of Smart Energy Hubs. , 2018, , 1-21.		1
47	Impacts of Energy Storage Technologies and Renewable Energy Sources on Energy Hub Systems. , 2018, , 23-52.		5
48	Demand Response Participation in Renewable Energy Hubs. , 2018, , 129-161.		3
49	Methane hydrate: Modeling and assessing the experimental data of incipient stability conditions. Journal of Dispersion Science and Technology, 2018, 39, 848-861.	1.3	2
50	CO2 hydrate: Modeling of incipient stability conditions and dissociation enthalpy. Petroleum Science and Technology, 2018, 36, 259-265.	0.7	2
51	Coupled Thermo-Poro-Elastic modeling of near wellbore zone with stress dependent porous material properties. Journal of Natural Gas Science and Engineering, 2018, 52, 559-574.	2.1	9
52	Optimal management of energy hubs and smart energy hubs – A review. Renewable and Sustainable Energy Reviews, 2018, 89, 33-50.	8.2	218
53	The effects of ground heat exchanger parameters changes on geothermal heat pump performance – A review. Applied Thermal Engineering, 2018, 129, 1645-1658.	3.0	118
54	Modeling the electrical energy consumption profile for residential buildings in Iran. Sustainable Cities and Society, 2018, 41, 481-489.	5.1	58

#	Article	IF	CITATIONS
55	Landfill Site Selection Using a Multi-Criteria Decision-Making Method: A Case Study of the Salafcheghan Special Economic Zone, Iran. Sustainability, 2018, 10, 1107.	1.6	29
56	Numerical simulation of a novel spiral type ground heat exchanger for enhancing heat transfer performance of geothermal heat pump. Energy Conversion and Management, 2018, 168, 296-307.	4.4	75
57	Landslide modelling and susceptibility mapping using AHP and fuzzy approaches. International Journal of Hydrology, 2018, 2, .	0.2	13
58	Thermo-economic modeling and GIS-based spatial data analysis of ground source heat pump systems for regional shallow geothermal mapping. Renewable and Sustainable Energy Reviews, 2017, 72, 648-660.	8.2	47
59	Geothermal sea water desalination system (GSWDS) using abandoned oil/gas wells. Geothermics, 2017, 67, 66-75.	1.5	46
60	Solarâ€essisted geothermal power generation hybrid system from abandoned oil/gas wells. IET Renewable Power Generation, 2017, 11, 771-777.	1.7	17
61	GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission. Energy and Buildings, 2017, 138, 309-317.	3.1	78
62	Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran. Renewable and Sustainable Energy Reviews, 2017, 75, 1198-1206.	8.2	61
63	GIS-based spatially integrated bioenergy resources assessment in Kurdistan Province-Northwest Iran. Sustainable Energy Technologies and Assessments, 2017, 23, 11-20.	1.7	15
64	Modeling for diversifying electricity supply by maximizing renewable energy use in Ebino city southern Japan. Sustainable Cities and Society, 2017, 34, 371-384.	5.1	52
65	Energy hub: From a model to a concept – A review. Renewable and Sustainable Energy Reviews, 2017, 80, 1512-1527.	8.2	331
66	Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal field, Iran. Geothermal Energy, 2017, 5, .	0.9	10
67	Virtual water evaluation for grains productsin Iran Case study: pea and bean. Journal of Water and Land Development, 2017, 35, 275-280.	0.9	1
68	The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Conversion and Management, 2016, 123, 581-591.	4.4	63
69	Numerical modeling and economic analysis of a ground source heat pump for supplying energy for a greenhouse in Alborz province, Iran. Journal of Cleaner Production, 2016, 131, 145-154.	4.6	50
70	Simulation of Power Production from Dry Geothermal Well Using Down-hole Heat Exchanger in Sabalan Field, Northwest Iran. Natural Resources Research, 2016, 25, 227-239.	2.2	23
71	Multi-criteria decision support system for wind farm site selection using GIS. Sustainable Energy Technologies and Assessments, 2016, 13, 38-50.	1.7	198
72	Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Conversion and Management, 2016, 115, 17-25.	4.4	139

#	Article	IF	CITATIONS
73	Environmental awareness and economical profits of replacing gas turbines in gas compressor stations: A case study of Polkalleh station in Iran. Environmental Engineering Research, 2016, 21, 132-139.	1.5	O
74	A GIS Based Integration Method for Geothermal Resources Exploration and Site Selection. Energy Exploration and Exploitation, 2015, 33, 243-257.	1.1	15
75	Biogas production potential from livestock manure in Iran. Renewable and Sustainable Energy Reviews, 2015, 50, 748-754.	8.2	112
76	Numerical simulation of power production from abandoned oil wells in Ahwaz oil field in southern Iran. Geothermics, 2015, 55, 16-23.	1.5	79
77	Biodiesel production from Norouzak (Salvia lerifolia) seeds as an indigenous source of bio fuel in Iran using ultrasound. Energy Conversion and Management, 2015, 99, 132-140.	4.4	50
78	Multi criteria site selection model for wind-compressed air energy storage power plants in Iran. Renewable and Sustainable Energy Reviews, 2014, 32, 579-590.	8.2	59
79	Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics, 2014, 50, 189-201.	1.5	44
80	Spatial data analysis for exploration of regional scale geothermal resources. Journal of Volcanology and Geothermal Research, 2013, 266, 69-83.	0.8	25
81	Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renewable Energy, 2013, 51, 53-59.	4.3	164
82	Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geothermal field, Iran. Energy, 2011, 36, 4552-4569.	4.5	35
83	Numerical Simulation of Northwest Sabalan Geothermal Reservoir, Iran. , 2011, , .		1
84	Developing the geothermal resources map of Iran. Geothermics, 2010, 39, 140-151.	1.5	86
85	Geothermal energy resources and development in Iran. Renewable and Sustainable Energy Reviews, 2009, 13, 1127-1132.	8.2	53
86	GIS integration model for geothermal exploration and well siting. Geothermics, 2008, 37, 107-131.	1.5	90
87	GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan. Computers and Geosciences, 2007, 33, 1008-1021.	2.0	70