
Himanshu Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BrÃ,nsted basicity of the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18679-18683.	3.3	159
2	The hydrogel template method for fabrication of homogeneous nano/microparticles. Journal of Controlled Release, 2010, 141, 314-319.	4.8	128
3	Protonation and Oligomerization of Gaseous Isoprene on Mildly Acidic Surfaces: Implications for Atmospheric Chemistry. Journal of Physical Chemistry A, 2012, 116, 6027-6032.	1.1	96
4	Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids. Nature Communications, 2018, 9, 3606.	5.8	85
5	Electrification at water–hydrophobe interfaces. Nature Communications, 2020, 11, 5285.	5.8	75
6	Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. ACS Applied Materials & Interfaces, 2016, 8, 8168-8174.	4.0	67
7	Simple-to-Apply Wetting Model to Predict Thermodynamically Stable and Metastable Contact Angles on Textured/Rough/Patterned Surfaces. Journal of Physical Chemistry C, 2017, 121, 5642-5656.	1.5	64
8	Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces. ACS Applied Materials & amp; Interfaces, 2017, 9, 21532-21538.	4.0	64
9	Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Science Advances, 2020, 6, eaax6192.	4.7	60
10	Anions dramatically enhance proton transfer through aqueous interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10228-10232.	3.3	55
11	Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. Journal of Colloid and Interface Science, 2019, 533, 723-732.	5.0	50
12	Hofmeister effects in micromolar electrolyte solutions. Journal of Chemical Physics, 2012, 136, 154707.	1.2	44
13	On the formation of hydrogen peroxide in water microdroplets. Chemical Science, 2022, 13, 2574-2583.	3.7	44
14	The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface. Chemical Science, 2019, 10, 2566-2577.	3.7	43
15	Assessing omniphobicity by immersion. Journal of Colloid and Interface Science, 2019, 534, 156-162.	5.0	38
16	Branched Polymeric Media: Boron-Chelating Resins from Hyperbranched Polyethylenimine. Environmental Science & Technology, 2012, 46, 8998-9004.	4.6	35
17	Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs. SPE Journal, 2018, 23, 84-101.	1.7	33
18	Biomimetic Coating-free Superomniphobicity. Scientific Reports, 2020, 10, 7934.	1.6	33

Himanshu Mishra

#	Article	IF	CITATIONS
19	Tropospheric aerosol as a reactive intermediate. Faraday Discussions, 2013, 165, 407.	1.6	29
20	Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. Journal of Membrane Science, 2019, 588, 117185.	4.1	27
21	Nuclear Quantum Effects in Hydrophobic Nanoconfinement. Journal of Physical Chemistry Letters, 2019, 10, 5530-5535.	2.1	26
22	The Air–Water Interface of Water Microdroplets Formed by Ultrasonication or Condensation Does Not Produce H ₂ 0 ₂ . Journal of Physical Chemistry Letters, 2021, 12, 11422-11429.	2.1	25
23	A molecular to macro level assessment of direct contact membrane distillation for separating organics from water. Journal of Membrane Science, 2020, 608, 118140.	4.1	23
24	Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Scientific Reports, 2020, 10, 7785.	1.6	22
25	Wetting of water on graphene nanopowders of different thicknesses. Applied Physics Letters, 2018, 112,	1.5	20
26	How particle–particle and liquid–particle interactions govern the fate of evaporating liquid marbles. Soft Matter, 2021, 17, 7628-7644.	1.2	19
27	Thermomechanical and Thermal Contact Characteristics of Bismuth Telluride Films Electrodeposited on Carbon Nanotube Arrays. Advanced Materials, 2009, 21, 4280-4283.	11.1	14
28	Quantum chemical insights into the dissociation of nitric acid on the surface of aqueous electrolytes. International Journal of Quantum Chemistry, 2013, 113, 413-417.	1.0	14
29	Suppression of Leidenfrost effect on superhydrophobic surfaces. Physics of Fluids, 2021, 33, .	1.6	14
30	Rendering SiO ₂ /Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars. Journal of Visualized Experiments, 2020, , .	0.2	12
31	Nature-Inspired Superhydrophobic Sand Mulches Increase Agricultural Productivity and Water-Use Efficiency in Arid Regions. ACS Agricultural Science and Technology, 2022, 2, 276-288.	1.0	12
32	Counterintuitive Wetting Transitions in Doubly Reentrant Cavities as a Function of Surface Makeâ€Up, Hydrostatic Pressure, and Cavity Aspect Ratio. Advanced Materials Interfaces, 2020, 7, 2001268.	1.9	11
33	Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs. , 2016, , .		10
34	Reply to the â€~Comment on "The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interfaceâ€â€™ by A. J. Colussi and S. Enami, <i>Chem. Sci.</i> , 2019, 10 , DOI: 10.1039/c9sc00991d. Chemical Science, 2019, 10, 8256-8261.	3.7	10
35	Proof-of-Concept for Gas-Entrapping Membranes Derived from Water-Loving SiO ₂ /Si/SiO ₂ Wafers for Green Desalination. Journal of Visualized Experiments, 2020, , .	0.2	9
36	Nature-inspired wax-coated jute bags for reducingÂpost-harvest storage losses. Scientific Reports, 2021, 11, 15354.	1.6	7

HIMANSHU MISHRA

#	Article	IF	CITATIONS
37	Zwitterions Layer at but Do Not Screen Electrified Interfaces. Journal of Physical Chemistry B, 2022, 126, 1852-1860.	1.2	5
38	Why did only one genus of insects, Halobates, take to the high seas?. PLoS Biology, 2022, 20, e3001570.	2.6	4
39	A firstâ€principles approach for treating wastewaters. International Journal of Quantum Chemistry, 2021, 121, e26501.	1.0	3
40	Direct imaging of polymer filaments pulled from rebounding drops. Soft Matter, 2022, 18, 5097-5105.	1.2	2
41	Effects of superhydrophobic sand mulching on evapotranspiration and phenotypic responses in tomato (<i>Solanum lycopersicum</i>) plants under normal and reduced irrigation. Plant-Environment Interactions, 0, , .	0.7	1
42	Examining the best-fit paradigm for FEM at element level. Sadhana - Academy Proceedings in Engineering Sciences, 2004, 29, 573-588.	0.8	0
43	Cover Image, Volume 121, Issue 5. International Journal of Quantum Chemistry, 2021, 121, e26288.	1.0	0
44	10.1063/5.0064040.3., 2021, , .		0
45	10.1063/5.0064040.7. , 2021, , .		0
46	10.1063/5.0064040.4. , 2021, , .		0