Wei Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801411/publications.pdf

Version: 2024-02-01

		43973	56606
131	7,663	48	83
papers	citations	h-index	g-index
137	137	137	8150
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fluorescent probes for organelle-targeted bioactive species imaging. Chemical Science, 2019, 10, 6035-6071.	3.7	463
2	A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 2018, 9, 5044.	5.8	380
3	A Multicolor Nanoprobe for Detection and Imaging of Tumorâ€Related mRNAs in Living Cells. Angewandte Chemie - International Edition, 2012, 51, 7426-7430.	7.2	298
4	A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy. ACS Nano, 2015, 9, 11064-11074.	7.3	274
5	A Dual†Targeted Organic Photothermal Agent for Enhanced Photothermal Therapy. Angewandte Chemie - International Edition, 2019, 58, 1057-1061.	7.2	232
6	Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2123-2129.	4.0	213
7	Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles. ACS Nano, 2018, 12, 5197-5206.	7.3	213
8	A Highly Selective and Instantaneous Nanoprobe for Detection and Imaging of Ascorbic Acid in Living Cells and in Vivo. Analytical Chemistry, 2014, 86, 3924-3930.	3.2	203
9	Tumor-Targeted Cascade Nanoreactor Based on Metal–Organic Frameworks for Synergistic Ferroptosis–Starvation Anticancer Therapy. ACS Nano, 2020, 14, 11017-11028.	7.3	203
10	Multiplexed Detection and Imaging of Intracellular mRNAs Using a Four-Color Nanoprobe. Analytical Chemistry, 2013, 85, 10581-10588.	3.2	195
11	3 D Porous Nickel–Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting. ChemSusChem, 2017, 10, 4170-4177.	3.6	187
12	Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO ₃ Mineralized Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 14134-14139.	7.2	183
13	Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26529-26558.	4.0	159
14	A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with NIR activated multiple ROS. Chemical Science, 2016, 7, 4237-4244.	3.7	155
15	Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 16763-16776.	7.2	143
16	Catalase-like metal–organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chemical Science, 2019, 10, 5773-5778.	3.7	116
17	Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells. Analytical Chemistry, 2016, 88, 6743-6748.	3.2	108
18	MnO ₂ â€Modified Persistent Luminescence Nanoparticles for Detection and Imaging of Glutathione in Living Cells and In Vivo. Chemistry - A European Journal, 2014, 20, 16488-16491.	1.7	101

#	Article	IF	Citations
19	Real-Time Imaging of Mitochondrial Hydrogen Peroxide and pH Fluctuations in Living Cells Using a Fluorescent Nanosensor. Analytical Chemistry, 2015, 87, 3678-3684.	3.2	98
20	Near-Infrared-Triggered <i>in Situ</i> Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS Nano, 2018, 12, 9412-9422.	7.3	95
21	Dual-Targeted Nanocarrier Based on Cell Surface Receptor and Intracellular mRNA: An Effective Strategy for Cancer Cell Imaging and Therapy. Analytical Chemistry, 2013, 85, 6930-6935.	3.2	94
22	Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chemical Science, 2017, 8, 4896-4903.	3.7	92
23	A Nearâ€Infrared Lightâ€Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release. Advanced Functional Materials, 2013, 23, 2255-2262.	7.8	91
24	A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chemical Science, 2020, 11, 6882-6888.	3.7	87
25	GSH-Responsive Nanoprodrug to Inhibit Glycolysis and Alleviate Immunosuppression for Cancer Therapy. Nano Letters, 2021, 21, 7862-7869.	4.5	81
26	IMC PID controller tuning for stable and unstable processes with time delay. Chemical Engineering Research and Design, 2016, 105, 120-129.	2.7	80
27	Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chemical Communications, 2020, 56, 1389-1392.	2.2	76
28	A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chemical Science, 2018, 9, 3159-3164.	3.7	75
29	Nanoenzymes in disease diagnosis and therapy. Chemical Communications, 2020, 56, 15513-15524.	2.2	75
30	Duplex-Specific Nuclease-Assisted CRISPR-Cas12a Strategy for MicroRNA Detection Using a Personal Glucose Meter. Analytical Chemistry, 2021, 93, 10719-10726.	3.2	72
31	A Highly Sensitive Strategy for Fluorescence Imaging of MicroRNA in Living Cells and in Vivo Based on Graphene Oxide-Enhanced Signal Molecules Quenching of Molecular Beacon. ACS Applied Materials & amp; Interfaces, 2018, 10, 6982-6990.	4.0	71
32	Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China. Canadian Journal of Forest Research, 2014, 44, 326-339.	0.8	70
33	Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. Chinese Chemical Letters, 2019, 30, 1293-1296.	4.8	69
34	A cancer cell membrane-encapsulated MnO ₂ nanoreactor for combined photodynamic-starvation therapy. Chemical Communications, 2019, 55, 5115-5118.	2.2	69
35	A DNA Tetrahedron Nanoprobe with Controlled Distance of Dyes for Multiple Detection in Living Cells and in Vivo. Analytical Chemistry, 2017, 89, 6670-6677.	3.2	64
36	Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries. Nano Research, 2019, 12, 549-555.	5.8	62

#	Article	IF	CITATIONS
37	A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite. Chemical Science, 2018, 9, 3563-3569.	3.7	60
38	Dual-targeted photothermal agents for enhanced cancer therapy. Chemical Science, 2020, 11, 8055-8072.	3.7	60
39	Fluorescent Nanocomposite for Visualizing Cross-Talk between MicroRNA-21 and Hydrogen Peroxide in Ischemia-Reperfusion Injury in Live Cells and In Vivo. Analytical Chemistry, 2016, 88, 11886-11891.	3.2	59
40	Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. ACS Nano, 2018, 12, 7519-7528.	7.3	59
41	A Proteinâ€Binding Molecular Photothermal Agent for Tumor Ablation. Angewandte Chemie - International Edition, 2021, 60, 13564-13568.	7.2	59
42	FRET-based nanoprobes for simultaneous monitoring of multiple mRNAs in living cells using single wavelength excitation. Chemical Communications, 2016, 52, 4569-4572.	2.2	57
43	Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics, 2019, 9, 167-178.	4.6	57
44	Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid. Analytical Chemistry, 2021, 93, 15216-15223.	3.2	57
45	Immunogenic cell death inducers for enhanced cancer immunotherapy. Chemical Communications, 2021, 57, 12087-12097.	2.2	56
46	Reversing Multidrug Resistance by Multiplexed Gene Silencing for Enhanced Breast Cancer Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15461-15466.	4.0	55
47	A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells. Nanoscale, 2018, 10, 14264-14271.	2.8	54
48	CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Analytical Chemistry, 2021, 93, 11899-11909.	3.2	54
49	A Dualâ€Targeted Organic Photothermal Agent for Enhanced Photothermal Therapy. Angewandte Chemie, 2019, 131, 1069-1073.	1.6	53
50	Simultaneous detection of multiple targets involved in the PI3K/AKT pathway for investigating cellular migration and invasion with a multicolor fluorescent nanoprobe. Chemical Communications, 2017, 53, 356-359.	2.2	52
51	Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter, 2018, 14, 6313-6319.	1.2	51
52	A tumour mRNA-triggered nanocarrier for multimodal cancer cell imaging and therapy. Chemical Communications, 2014, 50, 7473-7476.	2.2	49
53	Nuclear-targeted siRNA delivery for long-term gene silencing. Chemical Science, 2017, 8, 2816-2822.	3.7	48
54	Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27512-27521.	4.0	47

#	Article	IF	Citations
55	Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Research, 2015, 22, 53-67.	1.5	46
56	A biomimetic MOF nanoreactor enables synergistic suppression of intracellular defense systems for augmented tumor ablation. Chemical Communications, 2020, 56, 924-927.	2.2	39
57	A Spherical Nucleic Acid Probe Based on the Au–Se Bond. Analytical Chemistry, 2020, 92, 8459-8463.	3.2	37
58	Organelle-localized radiosensitizers. Chemical Communications, 2020, 56, 10621-10630.	2.2	36
59	Inducing Endoplasmic Reticulum Stress to Expose Immunogens: A DNA Tetrahedron Nanoregulator for Enhanced Immunotherapy. Advanced Functional Materials, 2020, 30, 2000532.	7.8	35
60	Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Analytical Chemistry, 2021, 93, 11751-11757.	3.2	35
61	Multicolor Covalent Organic Framework–DNA Nanoprobe for Fluorescence Imaging of Biomarkers with Different Locations in Living Cells. Analytical Chemistry, 2021, 93, 13734-13741.	3.2	33
62	Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO 3 Mineralized Metal–Organic Framework. Angewandte Chemie, 2019, 131, 14272-14277.	1.6	32
63	Ratiometric Fluorescent Quantification of the Size-Dependent Cellular Toxicity of Silica Nanoparticles. Analytical Chemistry, 2019, 91, 6088-6096.	3.2	32
64	Simultaneous Visualization of Multiple mRNAs and Matrix Metalloproteinases in Living Cells Using a Fluorescence Nanoprobe. Chemistry - A European Journal, 2015, 21, 6070-6073.	1.7	31
65	Rational Design of a Dual-Layered Metal–Organic Framework Nanostructure for Enhancing the Cell Imaging of Molecular Beacons. Analytical Chemistry, 2021, 93, 5437-5441.	3.2	31
66	Visualizing the Conversion Process of Alcohol-Induced Fatty Liver to Steatohepatitis in Vivo with a Fluorescent Nanoprobe. Analytical Chemistry, 2017, 89, 6196-6201.	3.2	30
67	Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chemical Communications, 2018, 54, 3656-3659.	2.2	30
68	An enzyme nanopocket based on covalent organic frameworks for long-term starvation therapy and enhanced photodynamic therapy of cancer. Chemical Communications, 2021, 57, 5402-5405.	2.2	30
69	Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy. Biomaterials Science, 2021, 9, 7977-7983.	2.6	29
70	Simultaneous Fluorescence Visualization of Epithelialâ€"Mesenchymal Transition and Apoptosis Processes in Tumor Cells for Evaluating the Impact of Epithelialâ€"Mesenchymal Transition on Drug Efficacy. Analytical Chemistry, 2018, 90, 10951-10957.	3.2	28
71	An anti-inflammatory nanoagent for tumor-targeted photothermal therapy. Chemical Communications, 2019, 55, 9645-9648.	2.2	28
72	A cancer cell membrane-camouflaged nanoreactor for enhanced radiotherapy against cancer metastasis. Chemical Communications, 2020, 56, 547-550.	2.2	28

#	Article	IF	Citations
73	Toward Flexible Zinc–Air Batteries with Selfâ€Supported Air Electrodes. Small, 2021, 17, e2006773.	5.2	28
74	Multiplexed gene silencing in living cells and in vivo using a DNAzymes–CoOOH nanocomposite. Chemical Communications, 2017, 53, 4962-4965.	2.2	27
75	Visualizing Breast Cancer Cell Proliferation and Invasion for Assessing Drug Efficacy with a Fluorescent Nanoprobe. Analytical Chemistry, 2017, 89, 10601-10607.	3.2	27
76	Self-assembly of biosurfactant–inorganic hybrid nanoflowers as efficient catalysts for degradation of cationic dyes. RSC Advances, 2017, 7, 43474-43482.	1.7	27
77	Ultrathin functionalized covalent organic framework nanosheets for tumor-targeted photodynamic therapy. Chemical Communications, 2021, 57, 6082-6085.	2.2	27
78	DDIT3 Targets Innate Immunity via the DDIT3-OTUD1-MAVS Pathway To Promote Bovine Viral Diarrhea Virus Replication. Journal of Virology, 2021, 95, .	1.5	27
79	Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chemical Science, 2021, 12, 3130-3145.	3.7	26
80	A Nongenetic Proximity-Induced FRET Strategy Based on DNA Tetrahedron for Visualizing the Receptor Dimerization. Analytical Chemistry, 2020, 92, 11921-11926.	3.2	25
81	Designing and Engineering of Nanocarriers for Bioapplication in Cancer Immunotherapy. ACS Applied Bio Materials, 2020, 3, 8321-8337.	2.3	25
82	ATP-triggered mitochondrial cascade reactions for cancer therapy with nanoscale zeolitic imidazole framework-90. Theranostics, 2021, 11, 7869-7878.	4.6	25
83	Immune Cycleâ€Based Strategies for Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2107540.	7.8	24
84	A gold–selenium-bonded nanoprobe for real-time <i>in situ</i> imaging of the upstream and downstream relationship between uPA and MMP-9 in cancer cells. Chemical Communications, 2019, 55, 5817-5820.	2.2	23
85	A tumor acidity activatable and Ca ²⁺ -assisted immuno-nanoagent enhances breast cancer therapy and suppresses cancer recurrence. Chemical Science, 2020, 11, 7429-7437.	3.7	22
86	A dual-catalytic nanoreactor for synergistic chemodynamic-starvation therapy toward tumor metastasis suppression. Biomaterials Science, 2021, 9, 3814-3820.	2.6	20
87	Cu ²⁺ Embedded Three-Dimensional Covalent Organic Framework for Multiple ROS-Based Cancer Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30618-30625.	4.0	20
88	Biosensors Based on the Au–Se Bond. Analytical Chemistry, 2020, 92, 9441-9448.	3.2	19
89	A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple <i>in vivo</i> applications. Chemical Communications, 2018, 54, 3504-3507.	2.2	18
90	A nuclear-targeted titanium dioxide radiosensitizer for cell cycle regulation and enhanced radiotherapy. Chemical Communications, 2019, 55, 8182-8185.	2.2	18

#	Article	IF	CITATIONS
91	Real-time in situ monitoring of signal molecules' evolution in apoptotic pathway via Au–Se bond constructed nanoprobe. Biosensors and Bioelectronics, 2020, 147, 111755.	5.3	18
92	Selenium-engineered covalent organic frameworks for high-efficiency and long-acting cancer therapy. Chemical Communications, 2021, 57, 6145-6148.	2.2	18
93	Nanocarriers with multi-locked DNA valves targeting intracellular tumor-related mRNAs for controlled drug release. Nanoscale, 2017, 9, 17318-17324.	2.8	17
94	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	1.7	17
95	A COF-based anti-interference nanoplatform for intracellular nucleic acid imaging. Chemical Communications, 2020, 56, 14267-14270.	2.2	17
96	Rapid Preparation of Au–Se–Peptide Nanoprobe Based on a Freezing Method for Bioimaging. Analytical Chemistry, 2019, 91, 15982-15987.	3.2	16
97	An endoplasmic reticulum-targeted organic photothermal agent for enhanced cancer therapy. Chinese Chemical Letters, 2022, 33, 793-797.	4.8	15
98	A self-assembly of an active tumor-targeted photothermal agent for enhanced anti-inflammatory cancer therapy. Nanoscale, 2019, 11, 18021-18025.	2.8	14
99	Boosting the abscopal effect of radiotherapy: a smart antigen-capturing radiosensitizer to eradicate metastatic breast tumors. Chemical Communications, 2020, 56, 10353-10356.	2.2	14
100	Polyvalent spherical aptamer engineered macrophages: X-ray-actuated phenotypic transformation for tumor immunotherapy. Chemical Science, 2021, 12, 13817-13824.	3.7	14
101	A Cu ²⁺ doped mesoporous polydopamine Fenton nanoplatform for low-temperature photothermal therapy. Materials Chemistry Frontiers, 2021, 5, 6546-6552.	3.2	14
102	Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 16901-16914.	1.6	14
103	Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chemical Communications, 2021, 57, 13309-13312.	2.2	13
104	Sustained-release nanocapsule based on a 3D COF for long-term enzyme prodrug therapy of cancer. Chemical Communications, 2022, 58, 5877-5880.	2.2	13
105	A GSH-responsive nanophotosensitizer for efficient photodynamic therapy. RSC Advances, 2018, 8, 42374-42379.	1.7	11
106	Preparation of Hierarchical Cubeâ€onâ€plate Metal Phosphides as Bifunctional Electrocatalysts for Overall Water Splitting. Chemistry - an Asian Journal, 2020, 15, 1500-1504.	1.7	11
107	Effects of additional salts on the interfacial tension of crude oil/zwitterionic gemini surfactant solutions. Journal of Dispersion Science and Technology, 2019, 40, 1031-1038.	1.3	10
108	Delivery nanoplatforms based on dynamic covalent chemistry. Chemical Communications, 2021, 57, 7067-7082.	2.2	10

#	Article	IF	CITATIONS
109	Stimuli-activated molecular photothermal agents for cancer therapy. Chemical Communications, 2021, 57, 6584-6595.	2.2	9
110	An efficient strategy for cancer therapy using a tumor- and lysosome-targeted organic photothermal agent. Nanoscale, 2021, 13, 8790-8794.	2.8	9
111	A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy. Chemical Science, 2021, 13, 105-110.	3.7	9
112	An <i>in vitro</i> site-specific cleavage assay of CRISPR-Cas9 using a personal glucose meter. Chemical Communications, 2020, 56, 8850-8853.	2.2	8
113	Real-Time <i>In Situ</i> Sequential Fluorescence Activation Imaging of Cyt <i>c</i> and Caspase-9 with a Gold–Selenium-Bonded Nanoprobe. Analytical Chemistry, 2021, 93, 16880-16886.	3.2	8
114	The matrix protein of vesicular stomatitis virus inhibits host-directed transcription of target genes via interaction with the TFIIH subunit p8. Veterinary Microbiology, 2017, 208, 82-88.	0.8	7
115	Cell membrane-anchoring covalent organic framework nanosheets for single-laser-triggered synergistic tumor therapy. Chemical Communications, 2021, 57, 11685-11688.	2,2	7
116	A biomimetic ZIF nanoagent for synergistic regulation of glutamine metabolism and intracellular acidosis of cancer. Chemical Communications, 2022, 58, 1554-1557.	2.2	7
117	INPP5E and Coordination of Signaling Networks in Cilia. Frontiers in Molecular Biosciences, 2022, 9, 885592.	1.6	7
118	An autophagy-inhibitory MOF nanoreactor for tumor-targeted synergistic therapy. Biomaterials Science, 2022, 10, 3088-3091.	2.6	7
119	Bovine Parainfluenza Virus Type 3 (BPIV3) Enters HeLa Cells via Clathrin-Mediated Endocytosis in a Cholesterol- and Dynamin-Dependent Manner. Viruses, 2021, 13, 1035.	1.5	6
120	Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Materials Today Nano, 2022, 19, 100236.	2.3	6
121	EIF3i affects vesicular stomatitis virus growth by interacting with matrix protein. Veterinary Microbiology, 2017, 212, 59-66.	0.8	5
122	An accurate method for determination of the performance characteristics of membrane-type restrictors. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 692-701.	1.0	4
123	Entry of bovine parainfluenza virus type 3 into MDBK cells occurs via clathrin-mediated endocytosis and macropinocytosis in a acid-dependent manner. Veterinary Microbiology, 2021, 259, 109148.	0.8	4
124	Cyclic chain displacement amplification-based dual-miRNA detection: a triple-line lateral flow strip for the diagnosis of lung cancer. Chemical Communications, 2021, 57, 12301-12304.	2.2	4
125	A DR4 capturer with AKT siRNA for the synergetic enhancement of death receptor-mediated apoptosis. Chemical Communications, 2018, 54, 13439-13442.	2.2	3
126	A mineralization strategy based on T-cell membrane coated CaCO ₃ nanoparticles against breast cancer and metastasis. Materials Chemistry Frontiers, 2021, 5, 5738-5745.	3.2	3

#	Article	IF	CITATIONS
127	The host cellular protein Ndufaf4 interacts with the vesicular stomatitis virus M protein and affects viral propagation. Virus Genes, 2021, 57, 250-257.	0.7	2
128	Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells. BioMed Research International, 2015, 2015, 1-9.	0.9	1
129	A Proteinâ€Binding Molecular Photothermal Agent for Tumor Ablation. Angewandte Chemie, 2021, 133, 13676-13680.	1.6	1
130	Application effect of centralized management combined with Information system application management in recycling, cleaning, disinfection and packaging of radiology instruments and reusable medical devices. Food Science and Technology, 0, , .	0.8	0
131	An active tumor-targeting organic photochemotherapy agent with naproxen for enhanced cancer therapy. Chemical Communications, 0, , .	2.2	0