## Steven P Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180130/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice.<br>EMBO Journal, 2000, 19, 6341-6350.                                                                                 | 3.5 | 690       |
| 2  | Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human<br>Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes. Circulation, 2005, 111,<br>11-20.   | 1.6 | 455       |
| 3  | The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology, 2006, 40, 16-23.                                                                                              | 0.9 | 390       |
| 4  | Guidelines for experimental models of myocardial ischemia and infarction. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2018, 314, H812-H838.                                                | 1.5 | 372       |
| 5  | Uncoupling Protein-2 Overexpression Inhibits Mitochondrial Death Pathway in Cardiomyocytes.<br>Circulation Research, 2003, 93, 192-200.                                                                              | 2.0 | 292       |
| 6  | Cardioprotection by <i>N</i> -Acetylglucosamine Linkage to Cellular Proteins. Circulation, 2008, 117, 1172-1182.                                                                                                     | 1.6 | 215       |
| 7  | Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4891-4896.              | 3.3 | 211       |
| 8  | Simvastatin Exerts Both Anti-inflammatory and Cardioprotective Effects in Apolipoprotein E–Deficient<br>Mice. Circulation, 2001, 103, 2598-2603.                                                                     | 1.6 | 189       |
| 9  | Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1567-H1573.               | 1.5 | 183       |
| 10 | Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H276-H282.                               | 1.5 | 183       |
| 11 | Metabolomic Analysis of Pressure-Overloaded and Infarcted Mouse Hearts. Circulation: Heart Failure, 2014, 7, 634-642.                                                                                                | 1.6 | 181       |
| 12 | PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochemical Journal, 2013, 451, 375-388.                                                                 | 1.7 | 175       |
| 13 | O-linked β- <i>N</i> -acetylglucosamine transferase is indispensable in the failing heart. Proceedings of the United States of America, 2010, 107, 17797-17802.                                                      | 3.3 | 170       |
| 14 | O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination. Cell<br>Metabolism, 2013, 17, 303-310.                                                                                     | 7.2 | 169       |
| 15 | The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR).<br>Circulation Research, 2015, 116, 572-586.                                                                       | 2.0 | 164       |
| 16 | Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac<br>function. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98,<br>9977-9982. | 3.3 | 146       |
| 17 | Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes.<br>Amino Acids, 2011, 40, 895-911.                                                                                  | 1.2 | 145       |
| 18 | <i>O</i> -GlcNAc Signaling in the Cardiovascular System. Circulation Research, 2010, 107, 171-185.                                                                                                                   | 2.0 | 142       |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. American Journal of<br>Physiology - Heart and Circulatory Physiology, 1999, 276, H1943-H1950.                                     | 1.5 | 136       |
| 20 | Bioenergetic function in cardiovascular cells: The importance of the reserve capacity and its biological regulation. Chemico-Biological Interactions, 2011, 191, 288-295.                                          | 1.7 | 134       |
| 21 | Unique Hexosaminidase Reduces Metabolic Survival Signal and Sensitizes Cardiac Myocytes to<br>Hypoxia/Reoxygenation Injury. Circulation Research, 2009, 104, 41-49.                                                | 2.0 | 132       |
| 22 | Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor.<br>Journal of the American College of Cardiology, 2002, 40, 1172-1178.                                            | 1.2 | 128       |
| 23 | O-GlcNAc and the cardiovascular system. , 2014, 142, 62-71.                                                                                                                                                        |     | 119       |
| 24 | Simvastatin Attenuates Oxidant-Induced Mitochondrial Dysfunction in Cardiac Myocytes. Circulation Research, 2003, 93, 697-699.                                                                                     | 2.0 | 114       |
| 25 | Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. Journal of Molecular and Cellular Cardiology, 2008, 45, 313-325.                         | 0.9 | 106       |
| 26 | Cariporide (HOE642), a Selective Na + -H + Exchange Inhibitor, Inhibits the Mitochondrial Death<br>Pathway. Circulation, 2003, 108, 2275-2281.                                                                     | 1.6 | 105       |
| 27 | Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation, 2017, 136, 2144-2157.                                                                                            | 1.6 | 103       |
| 28 | TRO40303, a New Cardioprotective Compound, Inhibits Mitochondrial Permeability Transition. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 696-706.                                              | 1.3 | 102       |
| 29 | <i>O</i> -GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2009, 297, H1711-H1719.                                         | 1.5 | 97        |
| 30 | O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during<br>cardiomyocyte hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2012,<br>302, H2122-H2130. | 1.5 | 96        |
| 31 | Pretreatment With Simvastatin Attenuates Myocardial Dysfunction After Ischemia and Chronic<br>Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 2059-2064.                                | 1.1 | 84        |
| 32 | HMGâ€CoA reductase inhibition protects the diabetic myocardium from ischemiaâ€reperfusion injury.<br>FASEB Journal, 2001, 15, 1454-1456.                                                                           | 0.2 | 83        |
| 33 | Myocardial Ischemia/Reperfusion Injury in NADPH Oxidase–Deficient Mice. Circulation Research, 2000,<br>87, 812-817.                                                                                                | 2.0 | 82        |
| 34 | Differential Actions of Cardioprotective Agents on the Mitochondrial Death Pathway. Circulation Research, 2003, 92, 195-202.                                                                                       | 2.0 | 78        |
| 35 | Cardiomyocyte <i>Ogt</i> is essential for postnatal viability. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2014, 306, H142-H153.                                                         | 1.5 | 78        |
| 36 | Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial<br>reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279,<br>H2196-H2201.     | 1.5 | 77        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Differential response to myocardial reperfusion injury in eNOS-deficient mice. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2002, 282, H2422-H2426.                                             | 1.5 | 77        |
| 38 | Myocardial ischemia-reperfusion injury in CD18- and ICAM-1-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2300-H2307.                                                    | 1.5 | 70        |
| 39 | Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H277-H282.                                 | 1.5 | 70        |
| 40 | Post-transcriptional gene silencing of KChIP2 and Navl²1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents. Journal of Molecular and Cellular Cardiology, 2008, 45, 336-346. | 0.9 | 69        |
| 41 | High Fat Feeding in Mice Is Insufficient to Induce Cardiac Dysfunction and Does Not Exacerbate Heart<br>Failure. PLoS ONE, 2013, 8, e83174.                                                                              | 1.1 | 69        |
| 42 | CD8 + -T-Cell Depletion Ameliorates Circulatory Shock in Plasmodium berghei -Infected Mice. Infection and Immunity, 2001, 69, 7341-7348.                                                                                 | 1.0 | 68        |
| 43 | PR-39, a potent neutrophil inhibitor, attenuates myocardial ischemia-reperfusion injury in mice.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2824-H2828.                           | 1.5 | 66        |
| 44 | Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiological Genomics, 2012, 44, 1208-1213.                                                                                                          | 1.0 | 64        |
| 45 | MicroRNA-539 Is Up-regulated in Failing Heart, and Suppresses O-GlcNAcase Expression. Journal of<br>Biological Chemistry, 2014, 289, 29665-29676.                                                                        | 1.6 | 63        |
| 46 | Recent Developments in Heart Failure. Circulation Research, 2015, 117, e58-63.                                                                                                                                           | 2.0 | 60        |
| 47 | Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure.<br>Basic Research in Cardiology, 2017, 112, 19.                                                                       | 2.5 | 60        |
| 48 | Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.                                                                                                        | 2.0 | 60        |
| 49 | Effects of Hypercholesterolemia on Myocardial Ischemia-Reperfusion Injury in LDL Receptor–Deficient<br>Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2776-2781.                                    | 1.1 | 57        |
| 50 | Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochemical Journal, 2017, 474, 2785-2801.                                                                 | 1.7 | 55        |
| 51 | Reperfusion injury is not affected by blockade of P-selectin in the diabetic mouse heart. American<br>Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H763-H769.                                    | 1.5 | 54        |
| 52 | Protein <i>O</i> -GlcNAcylation Is a Novel Cytoprotective Signal in Cardiac Stem Cells. Stem Cells, 2013, 31, 765-775.                                                                                                   | 1.4 | 54        |
| 53 | Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2021, 321, H1056-H1073.                                                              | 1.5 | 53        |
| 54 | Coronary endothelial P-selectin in pathogenesis of myocardial ischemia-reperfusion injury. American<br>Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1865-H1872.                                 | 1.5 | 46        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces<br>cardiac fibrosis following transaortic constriction. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2011, 301, H2073-H2080.     | 1.5 | 43        |
| 56 | Cardioprotective actions of endogenous IL-10 are independent of iNOS. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H48-H52.                                                                                              | 1.5 | 41        |
| 57 | Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases<br>glycolysis, hypertrophy, and myocyte resistance to hypoxia. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2008, 294, H2889-H2897. | 1.5 | 40        |
| 58 | Cardioprotective actions of acute HMG-CoA reductase inhibition in the setting of myocardial infarction. Acta Physiologica Scandinavica, 2001, 173, 139-143.                                                                                               | 2.3 | 39        |
| 59 | High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation.<br>Biochemical Journal, 2015, 467, 115-126.                                                                                                                      | 1.7 | 39        |
| 60 | Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Research in Cardiology, 2017, 112, 23.                                                                                          | 2.5 | 38        |
| 61 | Endothelial Cell Overexpression of Fas Ligand Attenuates Ischemia-Reperfusion Injury in the Heart.<br>Journal of Biological Chemistry, 2003, 278, 15185-15191.                                                                                            | 1.6 | 36        |
| 62 | Deficiency of iNOS does not attenuate severe congestive heart failure in mice. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2005, 288, H365-H370.                                                                                | 1.5 | 35        |
| 63 | A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells. Frontiers in Cell and Developmental Biology, 2016, 4, 78.                                                                                                             | 1.8 | 33        |
| 64 | <i>Airn</i> Regulates Igf2bp2 Translation in Cardiomyocytes. Circulation Research, 2018, 122, 1347-1353.                                                                                                                                                  | 2.0 | 33        |
| 65 | Ischemic preconditioning prevents postischemic P-selectin expression in the rat small intestine.<br>American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2476-H2481.                                                            | 1.5 | 32        |
| 66 | Low-dose simvastatin improves survival and ventricular function via eNOS in congestive heart<br>failure. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2743-H2751.                                                       | 1.5 | 30        |
| 67 | The COX-2/PGI2 Receptor Axis Plays an Obligatory Role in Mediating the Cardioprotection Conferred by the Late Phase of Ischemic Preconditioning. PLoS ONE, 2012, 7, e41178.                                                                               | 1.1 | 30        |
| 68 | New Insights into Metabolic Signaling and Cell Survival: The Role of β-O-Linkage of<br>N-Acetylglucosamine. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 602-609.                                                                    | 1.3 | 29        |
| 69 | E2F1 Transcription Factor Regulates O-linked N-acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Expression. Journal of Biological Chemistry, 2015, 290, 31013-31024.                                                                              | 1.6 | 28        |
| 70 | Myocardial reperfusion injury in neuronal nitric oxide synthase deficient mice. Coronary Artery<br>Disease, 2000, 11, 593-597.                                                                                                                            | 0.3 | 26        |
| 71 | Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochemical Journal, 2011, 435, 519-528.                                                                                                | 1.7 | 26        |
| 72 | RNA Editing. Circulation Research, 2018, 122, 399-401.                                                                                                                                                                                                    | 2.0 | 25        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reduced Cardiac Fructose 2,6 Bisphosphate Increases Hypertrophy and Decreases Glycolysis following Aortic Constriction. PLoS ONE, 2013, 8, e53951.                                                                        | 1.1 | 24        |
| 74 | Endothelial dysfunction as a nexus for endothelial cell-cardiomyocyte miscommunication. Frontiers in Physiology, 2014, 5, 328.                                                                                            | 1.3 | 23        |
| 75 | Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. Journal of Molecular and Cellular Cardiology, 2018, 118, 183-192.                                   | 0.9 | 23        |
| 76 | E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation.<br>Basic Research in Cardiology, 2019, 114, 28.                                                                        | 2.5 | 23        |
| 77 | Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. Journal of<br>Molecular and Cellular Cardiology, 2019, 137, 93-106.                                                                      | 0.9 | 21        |
| 78 | Induction of activating transcription factor 3 limits survival following infarct-induced heart failure in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1326-H1335.                | 1.5 | 20        |
| 79 | TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1189-H1201. | 1.5 | 18        |
| 80 | A Bittersweet Modification. Circulation Research, 2005, 96, 925-926.                                                                                                                                                      | 2.0 | 13        |
| 81 | Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biology, 2018, 17, 440-449.                                                            | 3.9 | 13        |
| 82 | Acute exposure to a high cholesterol diet attenuates myocardial ischemia–reperfusion injury in cholesteryl ester transfer protein mice. Coronary Artery Disease, 2001, 12, 37-44.                                         | 0.3 | 12        |
| 83 | Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction. PLoS ONE, 2020, 15, e0242250.                                                         | 1.1 | 11        |
| 84 | RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. DMM Disease Models and Mechanisms, 2019, 12, .                                                                  | 1.2 | 9         |
| 85 | Using gene-targeted mice to investigate the pathophysiology of myocardial reperfusion injury. Basic<br>Research in Cardiology, 2000, 95, 499-502.                                                                         | 2.5 | 8         |
| 86 | Metabolic signatures of pregnancy-induced cardiac growth. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2022, 323, H146-H164.                                                                     | 1.5 | 8         |
| 87 | Influence of biological sex and exercise on murine cardiac metabolism. Journal of Sport and Health<br>Science, 2022, 11, 479-494.                                                                                         | 3.3 | 8         |
| 88 | Myocardial Reperfusion Injury: Insights Gained from Gene-Targeted Mice. Physiology, 2000, 15, 303-308.                                                                                                                    | 1.6 | 7         |
| 89 | I'll Have the Rigor, but Hold the Mortis. Circulation Research, 2017, 120, 1852-1854.                                                                                                                                     | 2.0 | 7         |
| 90 | O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal<br>Stromal Cells. PLoS ONE, 2015, 10, e0142939.                                                                               | 1.1 | 6         |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cardiac PANK1 deletion exacerbates ventricular dysfunction during pressure overload. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H784-H797.                                                | 1.5 | 6         |
| 92  | Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix<br>Biology, 2022, 109, 49-69.                                                                                               | 1.5 | 6         |
| 93  | Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicological Sciences, 2021, 185, 64-76.                                                                                                    | 1.4 | 5         |
| 94  | Why publish in the <i>American Journal of Physiology-Heart and Circulatory Physiology</i> ?.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H221-H223.                                        | 1.5 | 4         |
| 95  | Cardiac mesenchymal cells from failing and nonfailing hearts limit ventricular dilation when<br>administered late after infarction. American Journal of Physiology - Heart and Circulatory Physiology,<br>2020, 319, H109-H122. | 1.5 | 4         |
| 96  | Loss of Oâ€GlcNAc transferase activity sensitizes cardiac myocytes to postâ€hypoxic death. FASEB Journal,<br>2008, 22, 750.10.                                                                                                  | 0.2 | 2         |
| 97  | Oâ $\in$ GlcNAc signaling attenuates mitochondrial permeability transition. FASEB Journal, 2008, 22, .                                                                                                                          | 0.2 | 2         |
| 98  | AMP-Dependent Protein Kinase Activators. Circulation Research, 2009, 104, 282-284.                                                                                                                                              | 2.0 | 1         |
| 99  | Angiotensinogen Takes Some of the Spotlight From Angiotensin II in the Cardiohepatic Axis.<br>Circulation Research, 2021, 129, 565-567.                                                                                         | 2.0 | 1         |
| 100 | Protein Oâ€GlcNAcylation – A Novel Cell Survival Signal in Cardiac Stem Cells. FASEB Journal, 2012, 26,<br>693.1.                                                                                                               | 0.2 | 1         |
| 101 | The Sweet Smell of Progress With Hyaluronan and Heart Failure. Hypertension, 2021, 77, 1928-1930.                                                                                                                               | 1.3 | Ο         |
| 102 | Leukocyte-Endothelial Interactions Following Myocardial Ischemia. , 2003, , 427-438.                                                                                                                                            |     | 0         |
| 103 | Oâ€GlcNAcase Exacerbates Postâ€Hypoxic Cardiac Myocyte Death. FASEB Journal, 2007, 21, A1376.                                                                                                                                   | 0.2 | 0         |
| 104 | Oâ€GlcNAc Transferase is a Pro‧urvival Enzyme in Postâ€Hypoxic Cardiac Myocytes. FASEB Journal, 2007, 21,<br>A800.                                                                                                              | 0.2 | 0         |
| 105 | Hexosamine signaling reduces ER stressâ€induced cardiomyocyte death. FASEB Journal, 2009, 23, 991.7.                                                                                                                            | 0.2 | 0         |
| 106 | TRO40303 attenuates oxidantâ€induced mitochondrial dysfunction in cardiac myocytes. FASEB Journal, 2009, 23, LB71.                                                                                                              | 0.2 | 0         |
| 107 | Protein Oâ€GlcNAcylation Exerts Mitogenic Effects in Cardiac Progenitor Cells. FASEB Journal, 2011, 25, 1043.16.                                                                                                                | 0.2 | 0         |
| 108 | Protein Oâ€GlcNAcylation Promotes Postâ€hypoxic Survival of Cardiac Progenitor Cells. FASEB Journal,<br>2011, 25, 861.12.                                                                                                       | 0.2 | 0         |