Malcolm J Hawkesford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localisation of iron and zinc in grain of biofortified wheat. Journal of Cereal Science, 2022, 105, 103470.	3.7	10
2	Global wheat production could benefit from closing the genetic yield gap. Nature Food, 2022, 3, 532-541.	14.0	29
3	High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 200-231.	9.6	141
4	The interaction between wheat roots and soil pores in structured field soil. Journal of Experimental Botany, 2021, 72, 747-756.	4.8	46
5	Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE, 2021, 16, e0246763.	2.5	11
6	A Neural Network Method for Classification of Sunlit and Shaded Components of Wheat Canopies in the Field Using High-Resolution Hyperspectral Imagery. Remote Sensing, 2021, 13, 898.	4.0	11
7	Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging. Plant Methods, 2021, 17, 26.	4.3	22
8	Post-translational cleavage of HMW-GS Dy10 allele improves the cookie-making quality in common wheat (Triticum aestivum). Molecular Breeding, 2021, 41, 1.	2.1	5
9	High molecular weight glutenin subunit (HMW-GS) 1Dx5 is concentrated in small protein bodies when overexpressed in wheat starchy endosperm. Journal of Cereal Science, 2021, 101, 103291.	3.7	4
10	Advances in the understanding of nitrogen (N) uptake by plant roots. Burleigh Dodds Series in Agricultural Science, 2021, , 303-320.	0.2	0
11	Editorial: State-of-the-Art Technology and Applications in Crop Phenomics. Frontiers in Plant Science, 2021, 12, 767324.	3.6	6
12	Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Frontiers in Plant Science, 2021, 12, 673576.	3.6	25
13	Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiology Reports, 2021, 26, 600-613.	1.5	8
14	Plant adaptation to nutrient stress. Plant Physiology Reports, 2021, 26, 583-586.	1.5	19
15	Disruption of the Nα-Acetyltransferase NatB Causes Sensitivity to Reductive Stress in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 799954.	3.6	6
16	Soil strength influences wheat root interactions with soil macropores. Plant, Cell and Environment, 2020, 43, 235-245.	5.7	52
17	Spatial distribution of functional components in the starchy endosperm of wheat grains. Journal of Cereal Science, 2020, 91, 102869.	3.7	36
18	Accounting for heterogeneity in the Î,–σ relationship: Application to wheat phenotyping using EMI. Vadose Zone Journal, 2020, 19, e20037.	2.2	11

#	Article	IF	CITATIONS
19	Timeâ€lapse geophysical assessment of agricultural practices on soil moisture dynamics. Vadose Zone Journal, 2020, 19, e20080.	2.2	28
20	Cysteine and Methionine Biosynthetic Enzymes Have Distinct Effects on Seed Nutritional Quality and on Molecular Phenotypes Associated With Accumulation of a Methionine-Rich Seed Storage Protein in Rice. Frontiers in Plant Science, 2020, 11, 1118.	3.6	8
21	Impacts of G x E x M on Nitrogen Use Efficiency in Wheat and Future Prospects. Frontiers in Plant Science, 2020, 11, 1157.	3.6	41
22	Assessing the evolution of wheat grain traits during the last 166Âyears using archived samples. Scientific Reports, 2020, 10, 21828.	3.3	12
23	Timeâ€intensive geoelectrical monitoring under winter wheat. Near Surface Geophysics, 2020, 18, 413-425.	1.2	7
24	Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum. Journal of Experimental Botany, 2020, 71, 4531-4546.	4.8	37
25	Genetic variation and heritability of grain protein deviation in European wheat genotypes. Field Crops Research, 2020, 255, 107896.	5.1	27
26	Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS ONE, 2020, 15, e0229107.	2.5	32
27	Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. Journal of Experimental Botany, 2020, 71, 1885-1898.	4.8	30
28	Effect of Senescence Phenotypes and Nitrate Availability on Wheat Leaf Metabolome during Grain Filling. Agronomy, 2019, 9, 305.	3.0	6
29	Gradients of Gluten Proteins and Free Amino Acids along the Longitudinal Axis of the Developing Caryopsis of Bread Wheat. Journal of Agricultural and Food Chemistry, 2019, 67, 8706-8714.	5.2	7
30	Radiometric Calibration of â€~Commercial off the Shelf' Cameras for UAV-Based High-Resolution Temporal Crop Phenotyping of Reflectance and NDVI. Remote Sensing, 2019, 11, 1657.	4.0	25
31	DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks. Frontiers in Plant Science, 2019, 10, 1176.	3.6	96
32	Foliar N Application at Anthesis Stimulates Gene Expression of Grain Protein Fractions and Alters Protein Body Distribution in Winter Wheat (<i>Triticum aestivum</i> L.). Journal of Agricultural and Food Chemistry, 2019, 67, 12709-12719.	5.2	3
33	Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Current Opinion in Plant Biology, 2019, 49, 35-42.	7.1	89
34	A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132, 2285-2294.	3.6	39
35	Scalable Database Indexing and Fast Image Retrieval Based on Deep Learning and Hierarchically Nested Structure Applied to Remote Sensing and Plant Biology. Journal of Imaging, 2019, 5, 33.	3.0	18
36	Sulfur metabolism in <i>Allium cepa</i> is hardly affected by chloride and sulfate salinity. Archives of Agronomy and Soil Science, 2019, 65, 945-956.	2.6	16

#	Article	IF	CITATIONS
37	Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm. Journal of Experimental Botany, 2018, 69, 3117-3126.	4.8	43
38	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	12.8	110
39	Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. Trends in Plant Science, 2018, 23, 1029-1037.	8.8	205
40	Calcium ameliorates the toxicity of sulfate salinity in Brassica rapa. Journal of Plant Physiology, 2018, 231, 1-8.	3.5	9
41	The electronic Rothamsted Archive (e-RA), an online resource for data from the Rothamsted long-term experiments. Scientific Data, 2018, 5, 180072.	5.3	57
42	Hidden variation in polyploid wheat drives local adaptation. Genome Research, 2018, 28, 1319-1332.	5.5	41
43	Methods to estimate changes in soil water for phenotyping root activity in the field. Plant and Soil, 2017, 415, 407-422.	3.7	72
44	Effects of Selenium on Plant Metabolism and Implications for Crops and Consumers. Plant Ecophysiology, 2017, , 257-275.	1.5	36
45	Plant phenotyping: increasing throughput and precision at multiple scales. Functional Plant Biology, 2017, 44, v.	2.1	21
46	Genetic variation in traits for nitrogen use efficiency in wheat. Journal of Experimental Botany, 2017, 68, 2627-2632.	4.8	123
47	Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 2017, 44, 143.	2.1	275
48	Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Scientific Reports, 2017, 7, 5461.	3.3	44
49	The role of <scp>ZIP</scp> transporters and group F <scp>bZIP</scp> transcription factors in the Znâ€deficiency response of wheat (<i>Triticum aestivum</i>). Plant Journal, 2017, 92, 291-304.	5.7	132
50	Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil, 2017, 411, 319-332.	3.7	67
51	System analysis of metabolism and the transcriptome in <i>Arabidopsis thaliana</i> roots reveals differential coâ€regulation upon iron, sulfur and potassium deficiency. Plant, Cell and Environment, 2017, 40, 95-107.	5.7	104
52	Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping. Plant Methods, 2017, 13, 103.	4.3	38
53	Enhanced Plant Rooting and Crop System Management for Improved N Use Efficiency. Advances in Agronomy, 2017, , 205-239.	5.2	56
54	Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering. Frontiers in Plant Science, 2017, 8, 252.	3.6	69

#	Article	IF	CITATIONS
55	Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply. Frontiers in Plant Science, 2017, 8, 2048.	3.6	42
56	Manganese Toxicity Hardly Affects Sulfur Metabolism in Brassica rapa. Proceedings of the International Plant Sulfur Workshop, 2017, , 155-162.	0.1	4
57	Impact of Atmospheric H2S, Salinity and Anoxia on Sulfur Metabolism in Zea mays. Proceedings of the International Plant Sulfur Workshop, 2017, , 93-101.	0.1	4
58	Sulfate Transport in Plants: A Personal Perspective. Proceedings of the International Plant Sulfur Workshop, 2017, , 3-12.	0.1	1
59	High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sensing, 2016, 8, 1031.	4.0	298
60	Interactions of Sulfate with Other Nutrients As Revealed by H2S Fumigation of Chinese Cabbage. Frontiers in Plant Science, 2016, 7, 541.	3.6	30
61	Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 2016, 193, 1-15.	5.1	128
62	Deep roots and soil structure. Plant, Cell and Environment, 2016, 39, 1662-1668.	5.7	115
63	Cenome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics, 2016, 17, 797.	2.8	86
64	Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: Regulation of sulfur uptake and assimilation. Environmental and Experimental Botany, 2016, 124, 1-10.	4.2	32
65	The dynamics of protein body formation in developing wheat grain. Plant Biotechnology Journal, 2016, 14, 1876-1882.	8.3	45
66	Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition. Frontiers in Plant Science, 2015, 6, 924.	3.6	17
67	Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. Plant Science, 2015, 236, 239-249.	3.6	43
68	Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology, 2015, 17, 904-913.	3.8	127
69	A novel approach to identify genes that determine grain protein deviation in cereals. Plant Biotechnology Journal, 2015, 13, 625-635.	8.3	28
70	Efficient Mineral Nutrition: Genetic Improvement of Phosphate Uptake and Use Efficiency in Crops. Plant Ecophysiology, 2014, , 93-132.	1.5	3
71	Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. Journal of Experimental Botany, 2014, 65, 5697-5710.	4.8	90
72	The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Frontiers in Plant Science, 2014, 5, 704.	3.6	47

#	Article	IF	CITATIONS
73	Effects of nitrogen nutrition on the synthesis and deposition of the ï‰-gliadins of wheat. Annals of Botany, 2014, 113, 607-615.	2.9	58
74	Effects of Genotype, Season, and Nitrogen Nutrition on Gene Expression and Protein Accumulation in Wheat Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 4399-4407.	5.2	51
75	Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (<i>Solanum lycopersicum</i> L.) seedlings. Journal of Integrative Plant Biology, 2014, 56, 88-100.	8.5	43
76	Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. Journal of Plant Nutrition and Soil Science, 2014, 177, 748-757.	1.9	17
77	Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Research, 2014, 156, 242-248.	5.1	145
78	Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 2014, 59, 276-283.	3.7	297
79	Understanding Elemental Uptake in Plants Using High Resolution SIMS and Complementary Techniques. Microscopy and Microanalysis, 2014, 20, 1316-1317.	0.4	0
80	Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. Frontiers in Plant Science, 2014, 5, 805.	3.6	96
81	A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain. Journal of Experimental Botany, 2013, 64, 161-168.	4.8	47
82	Copper toxicity and sulfur metabolism in Chinese cabbage are affected by UV radiation. Environmental and Experimental Botany, 2013, 88, 60-70.	4.2	12
83	Natural Variation in Grain Composition of Wheat and Related Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 8295-8303.	5.2	136
84	Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. Journal of Experimental Botany, 2013, 64, 1745-1753.	4.8	176
85	Prospects of doubling global wheat yields. Food and Energy Security, 2013, 2, 34-48.	4.3	207
86	Mineral Composition Analysis: Measuring Anion Uptake and Anion Concentrations in Plant Tissues. , 2013, 953, 109-119.		1
87	Identification of Differentially Senescing Mutants of Wheat and Impacts on Yield, Biomass and Nitrogen Partitioning ^F . Journal of Integrative Plant Biology, 2012, 54, 555-566.	8.5	81
88	Shortcomings in wheat yield predictions. Nature Climate Change, 2012, 2, 380-382.	18.8	25
89	Functions of Macronutrients. , 2012, , 135-189.		479
90	Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters. Frontiers in Plant Science, 2012, 2, 119.	3.6	101

#	Article	IF	CITATIONS
91	Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation. Protoplasma, 2012, 249, 671-686.	2.1	24
92	An Integrated Approach to Crop Genetic Improvement ^F . Journal of Integrative Plant Biology, 2012, 54, 250-259.	8.5	67
93	Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2012, 55, 183-187.	3.7	59
94	Sulfate Uptake and Assimilation $\hat{a} \in \mathcal{C}$ Whole Plant Regulation. , 2012, , 11-24.		6
95	Identification and Sequence Analysis of Sulfate/Selenate Transporters in Selenium Hyper- and Non-accumulating Astragalus Plant Species. , 2012, , 155-162.		1
96	High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots Â. Plant Physiology, 2011, 156, 913-924.	4.8	122
97	A Comparison of Sulfate and Selenium Accumulation in Relation to the Expression of Sulfate Transporter Genes in <i>Astragalus</i> Species. Plant Physiology, 2011, 157, 2227-2239.	4.8	72
98	Food security: increasing yield and improving resource use efficiency. Proceedings of the Nutrition Society, 2010, 69, 592-600.	1.0	94
99	Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. European Journal of Agronomy, 2010, 33, 1-11.	4.1	343
100	Influence of Sulfur Deficiency on the Expression of Specific Sulfate Transporters and the Distribution of Sulfur, Selenium, and Molybdenum in Wheat. Plant Physiology, 2010, 153, 327-336.	4.8	151
101	The Sulfate Transporter Family in Wheat: Tissue-Specific Gene Expression in Relation to Nutrition. Molecular Plant, 2010, 3, 374-389.	8.3	64
102	Effects of Crop Nutrition on Wheat Grain Composition and End Use Quality. Journal of Agricultural and Food Chemistry, 2010, 58, 3012-3021.	5.2	84
103	Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. Journal of Plant Physiology, 2010, 167, 438-446.	3.5	57
104	NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytologist, 2010, 185, 434-445.	7.3	126
105	Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbiology Ecology, 2009, 67, 140-150.	2.7	26
106	A sulphur deficiencyâ€induced gene, <i>sdi1</i> , involved in the utilization of stored sulphate pools under sulphurâ€limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. Plant Biotechnology Journal, 2009, 7, 200-209.	8.3	62
107	Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 2009, 114, 329-342.	5.1	316
108	Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. Journal of Plant Physiology, 2009, 166, 168-179.	3.5	52

#	Article	IF	CITATIONS
109	Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. Journal of Experimental Botany, 2009, 60, 3239-3253.	4.8	64
110	The role of <i>Variovorax</i> and other <i>Comamonadaceae</i> in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environmental Microbiology, 2008, 10, 1486-1500.	3.8	81
111	Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling. Journal of Experimental Botany, 2008, 59, 3675-3689.	4.8	113
112	Uptake, Distribution and Subcellular Transport of Sulfate. Advances in Photosynthesis and Respiration, 2008, , 15-30.	1.0	6
113	Variation in Molybdenum Content Across Broadly Distributed Populations of Arabidopsis thaliana Is Controlled by a Mitochondrial Molybdenum Transporter (MOT1). PLoS Genetics, 2008, 4, e1000004.	3.5	233
114	Responses to Sulfur Limitation in Maize. , 2008, , 1-19.		10
115	Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Functional Plant Biology, 2008, 35, 318.	2.1	51
116	Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2007, 58, 1717-1728.	4.8	119
117	Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 2007, 46, 282-292.	3.7	196
118	Leaf Developmental Stage Affects Sulfate Depletion and Specific Sulfate Transporter Expression During Sulfur Deprivation in Brassica napus L Plant Biology, 2007, 9, 647-653.	3.8	45
119	The Characteristic High Sulfate Content in <i>Brassica oleracea</i> is Controlled by the Expression and Activity of Sulfate Transporters. Plant Biology, 2007, 9, 654-661.	3.8	48
120	Sulfur and plant ecology: a central role of sulfate transporters in responses to sulfur availability. Plant Ecophysiology, 2007, , 1-15.	1.5	6
121	Managing sulphur metabolism in plants. Plant, Cell and Environment, 2006, 29, 382-395.	5.7	304
122	Mechanical Impedance and Nutrient Acquisition in Rice. Plant and Soil, 2006, 280, 65-76.	3.7	5
123	Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize. Annals of Botany, 2006, 97, 695-704.	2.9	65
124	Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 2006, 65, 169-181.	1.0	378
125	Nitrogenase Activity and Membrane Electrogenesis in the Cyanobacterium Anabaena variabilis Kütz. FEBS Journal, 2005, 115, 519-523.	0.2	39
126	Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. Journal of Experimental Botany, 2005, 56, 1575-1590.	4.8	36

#	Article	IF	CITATIONS
127	Markedly different gene expression in wheat grown with organic or inorganic fertilizer. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1901-1908.	2.6	59
128	Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiology, 2005, 138, 304-318.	4.8	377
129	O-Acetylserine and the Regulation of Expression of Genes Encoding Components for Sulfate Uptake and Assimilation in Potato. Plant Physiology, 2005, 138, 433-440.	4.8	100
130	Regulation of Sulfate Uptake and Expression of Sulfate Transporter Genes in Brassica oleracea as Affected by Atmospheric H2S and Pedospheric Sulfate Nutrition. Plant Physiology, 2004, 136, 3396-3408.	4.8	191
131	Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. Journal of Experimental Botany, 2004, 55, 1765-1773.	4.8	258
132	Vacuolar Sulfate Transporters Are Essential Determinants Controlling Internal Distribution of Sulfate in Arabidopsis. Plant Cell, 2004, 16, 2693-2704.	6.6	302
133	Coordinated Expression of Sulfate Uptake and Components of the Sulfate Assimilatory Pathway in Maize. Plant Biology, 2004, 6, 408-414.	3.8	49
134	Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. Genome, 2004, 47, 526-534.	2.0	32
135	Aerenchyma formation in roots of maize during sulphate starvation. Planta, 2003, 217, 382-391.	3.2	79
136	Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae. Planta, 2003, 218, 58-64.	3.2	73
137	Transporter gene families in plants: the sulphate transporter gene family - redundancy or specialization?. Physiologia Plantarum, 2003, 117, 155-163.	5.2	211
138	Elemental Sulfur and Thiol Accumulation in Tomato and Defense against a Fungal Vascular Pathogen. Plant Physiology, 2002, 128, 150-159.	4.8	91
139	Influence of Iron Status on Cadmium and Zinc Uptake by Different Ecotypes of the Hyperaccumulator Thlaspi caerulescens. Plant Physiology, 2002, 128, 1359-1367.	4.8	293
140	Modulation of cyanoalanine synthase and Oâ€acetylserine (thiol) lyases A and B activity by βâ€substituted alanyl and anion inhibitors. Journal of Experimental Botany, 2002, 53, 439-445.	4.8	14
141	Elemental Sulfur and Thiol Accumulation in Tomato and Defense against a Fungal Vascular Pathogen. Plant Physiology, 2002, 128, 150-159.	4.8	13
142	Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyltransferase. Plant Science, 2002, 162, 589-597.	3.6	38
143	Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiology, 2002, 128, 150-9.	4.8	19
144	Using plant analysis to predict yield losses caused by sulphur deficiency. Annals of Applied Biology, 2001, 138, 123-127.	2.5	31

#	Article	IF	CITATIONS
145	Introduction: The Molecular Analysis of Plant Adaptation to the Environment. , 2001, , 1-15.		0
146	The roles of three functional sulphate transporters involved in uptake and translocation of sulphate inArabidopsis thaliana. Plant Journal, 2000, 23, 171-182.	5.7	523
147	Title is missing!. Plant and Soil, 2000, 225, 95-107.	3.7	90
148	Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve Sâ€utilization efficiency. Journal of Experimental Botany, 2000, 51, 131-138.	4.8	10
149	Molecular genetics of sulphate assimilation. Advances in Botanical Research, 2000, 33, 159-223.	1.1	65
150	Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. Journal of Experimental Botany, 2000, 51, 985-993.	4.8	73
151	Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene, 2000, 253, 237-247.	2.2	125
152	Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 236-245.	2.6	121
153	Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve Sâ€utilization efficiency. Journal of Experimental Botany, 2000, 51, 131-138.	4.8	211
154	Sulphur Assimilation and Effects on Yield and Quality of Wheat. Journal of Cereal Science, 1999, 30, 1-17.	3.7	330
155	Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. Journal of Experimental Botany, 1998, 49, 1625-1636.	4.8	91
156	Distribution of Sulfur within Oilseed Rape Leaves in Response to Sulfur Deficiency during Vegetative Growth. Plant Physiology, 1998, 118, 1337-1344.	4.8	167
157	Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. Journal of Experimental Botany, 1998, 49, 1625-1636.	4.8	29
158	SO42- Deprivation Has an Early Effect on the Content of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Photosynthesis in Young Leaves of Wheat. Plant Physiology, 1997, 115, 1231-1239.	4.8	87
159	Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant Journal, 1997, 12, 875-884.	5.7	299
160	Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant and Soil, 1996, 181, 317-327.	3.7	80
161	Regulation of enzymes involved in the sulphur-assimilatory pathway. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 55-57.	0.4	18
162	Plant members of a family of sulfate transporters reveal functional subtypes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9373-9377.	7.1	343

#	Article	IF	CITATIONS
163	lsolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Molecular Genetics and Genomics, 1995, 247, 709-715.	2.4	136
164	Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta, 1993, 190, 297.	3.2	106
165	Molecular biological approaches to plant nutrition. Plant and Soil, 1993, 155-156, 21-31.	3.7	13
166	Molecular biological approaches to plant nutrition. , 1993, , 23-33.		7
167	Contrasting responses of sulphate and phosphate transport in barley (Hordeum vulgare L.) roots to protein-modifying reagents and inhibition of protein synthesis. Planta, 1992, 187, 306-14.	3.2	43
168	Differential protein synthesis in response to sulphate and phosphate deprivation: Identification of possible components of plasma-membrane transport systems in cultured tomato roots. Planta, 1991, 185, 323-9.	3.2	50
169	Association of ferredoxin-NADP+ oxidoreductase with the chloroplast cytochrome b-f complex. FEBS Letters, 1984, 174, 137-142.	2.8	95
170	Electron Transfer Around Photosystem I in Cyanobacterial Heterocyst Membranes. , 1984, , 671-674.		1
171	Reconstitution of photosynthetic electron transfer in cyanobacterial heterocyst membranes. FEBS Letters, 1983, 159, 262-266.	2.8	7
172	Kinetic and spectral resolution of cytochrome c -553 and cytochrome f in the photosynthetic electron-transfer chain of heterocysts. FEBS Letters, 1983, 159, 267-270.	2.8	1
173	Nitrogenase Activity and Membrane Electrogenesis in the Cyanobacterium Plectonema boryanum. FEBS Journal, 1982, 127, 63-66.	0.2	19

174 Control of Sulfur Uptake, Assimilation and Metabolism. , 0, , 348-372.

8