Yun Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801285/publications.pdf

Version: 2024-02-01

66234 118652 4,827 138 42 62 citations h-index g-index papers 146 146 146 4890 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Enhanced salt thickening effect of the aqueous solution of peaked-distribution alcohol ether sulfates (AES). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128146.	2.3	4
2	Solidâ€phase molecular selfâ€assembly facilitated supramolecular films with alternative hydrophobic/hydrophilic domains for skin moisture detection. Aggregate, 2022, 3, .	5.2	10
3	From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration. Cell Reports Physical Science, 2022, 3, 100771.	2.8	18
4	Neither Fluorocarbons nor Silicones: Hydrocarbon-Based Water-Borne Healable Supramolecular Elastomer with Unprecedent Dual Resistance to Water and Organic Solvents. CCS Chemistry, 2022, 4, 3724-3734.	4.6	1
5	Photoâ€Enhancedâ€Coordination Triggered Unprecedented Bistable AIE for Longâ€Term Optical Memories. Advanced Optical Materials, 2022, 10, .	3.6	6
6	Using Molecules with Superior Water-Plasticity to Build Solid-Phase Molecular Self-Assembly: Room-Temperature Engineering Mendable and Recyclable Functional Supramolecular Plastics. , 2022, 4, 145-152.		14
7	The high-concentration stable phase: The breakthrough of catanionic surfactant aqueous system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129120.	2.3	3
8	Opposite effect of cyclic and chain-like hydrocarbons on the trend of self-assembly transition in catanionic surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129231.	2.3	0
9	Clusterization-triggered emission (CTE): one for all, all for one. Materials Chemistry Frontiers, 2021, 5, 6693-6717.	3.2	69
10	Folic Acid-Based Coacervate Leading to a Double-Sided Tape for Adhesion of Diverse Wet and Dry Substrates. ACS Applied Materials & Substrates. ACS ACS Applied Materials & Substrates. ACS	4.0	16
11	Photoresponsive supramolecular strategy for controlled assembly in light-inert double-chain surfactant system. Journal of Colloid and Interface Science, 2021, 594, 727-736.	5.0	13
12	Enzyme-Responsive Molecular Assemblies Based on Host–Guest Chemistry. Langmuir, 2021, 37, 8348-8355.	1.6	10
13	Wearable Sensors Based on Solid-Phase Molecular Self-Assembly: Moisture-Strain Dual Responsiveness Facilitated Extremely High and Damage-Resistant Sensitivity. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 41997-42004.	4.0	8
14	Green Wood Adhesives from One-Pot Coacervation of Folic Acid and Branched Poly(ethylene imine). ACS Applied Bio Materials, 2021, 4, 7314-7321.	2.3	10
15	Visual recognition of ortho-xylene based on its host-guest crystalline self-assembly with $\hat{1}\pm$ -cyclodextrin. Journal of Colloid and Interface Science, 2021, 597, 325-333.	5.0	12
16	Generating circularly polarized luminescence from clusterizationâ€triggered emission using solid phase molecular self-assembly. Nature Communications, 2021, 12, 5496.	5.8	51
17	Not by Serendipity: Rationally Designed Reversible Temperature-Responsive Circularly Polarized Luminescence Inversion by Coupling Two Scenarios of Harata–Kodaka's Rule. Jacs Au, 2021, 1, 156-163.	3.6	22
18	Chirality manipulation of supramolecular self-assembly based on the host-guest chemistry of cyclodextrin. Current Opinion in Colloid and Interface Science, 2021, 56, 101526.	3.4	16

#	Article	IF	Citations
19	α-Cyclodextrin-Catalyzed Symmetry Breaking and Precise Regulation of Supramolecular Self-Assembly Handedness with Harata–Kodaka's Rule. ACS Nano, 2021, 15, 19621-19628.	7.3	12
20	Enzyme-Responsive Aqueous Two-Phase Systems in a Cationic–Anionic Surfactant Mixture. Langmuir, 2021, 37, 13125-13131.	1.6	8
21	Bioinspired non-aromatic compounds emitters displaying aggregation independent emission and recoverable photo-bleaching. Talanta, 2020, 206, 120232.	2.9	13
22	Hydrationâ€Facilitated Fineâ€Tuning of the AIE Amphiphile Color and Application as Erasable Materials with Hot/Cold Dual Writing Modes. Angewandte Chemie - International Edition, 2020, 59, 10081-10086.	7.2	26
23	Hydrationâ€Facilitated Fineâ€Tuning of the AIE Amphiphile Color and Application as Erasable Materials with Hot/Cold Dual Writing Modes. Angewandte Chemie, 2020, 132, 10167-10172.	1.6	2
24	Recent advances in assemblies of cyclodextrins and amphiphiles: construction and regulation. Current Opinion in Colloid and Interface Science, 2020, 45, 44-56.	3.4	24
25	Putting Ink into Polyion Micelles: Full-Color Anticounterfeiting with Water/Organic Solvent Dual Resistance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39578-39585.	4.0	17
26	Exosomeâ€Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission**. Angewandte Chemie, 2020, 132, 21694-21698.	1.6	5
27	Exosomeâ€Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission**. Angewandte Chemie - International Edition, 2020, 59, 21510-21514.	7.2	23
28	A metalloprotein-inspired thermo-gene for thermogels. Inorganic Chemistry Frontiers, 2020, 7, 4086-4091.	3.0	4
29	Programmed Self-Assembly of Protein-Coated AlE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 29641-29649.	4.0	5
30	The pressing-induced formation of a large-area supramolecular film for oil capture. Materials Chemistry Frontiers, 2020, 4, 1530-1539.	3.2	13
31	Pressing-Induced Caking: A General Strategy to Scale-Span Molecular Self-Assembly. CCS Chemistry, 2020, 2, 98-106.	4.6	18
32	Steering Coacervation by a Pair of Broad-Spectrum Regulators. ACS Nano, 2019, 13, 2420-2426.	7.3	9
33	Endowing a Light-Inert Aqueous Surfactant Two-Phase System with Photoresponsiveness by Introducing a Trojan Horse. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15103-15110.	4.0	14
34	Selfâ€Assembly of Aggregationâ€Inducedâ€Emission Molecules. Chemistry - an Asian Journal, 2019, 14, 730-750.	1.7	67
35	A human vision inspired adaptive platform for one-on-multiple recognition. Chemical Communications, 2019, 55, 4829-4832.	2.2	2
36	Trojan Antibiotics: New Weapons for Fighting Against Drug Resistance. ACS Applied Bio Materials, 2019, 2, 447-453.	2.3	11

#	Article	IF	CITATIONS
37	Designed construction of tween $60@2\hat{1}^2$ -CD self-assembly vesicles as drug delivery carrier for cancer chemotherapy. Drug Delivery, 2018, 25, 623-631.	2.5	7
38	Self-assembly facilitated and visible light-driven generation of carbon dots. Chemical Communications, 2018, 54, 5960-5963.	2.2	9
39	Multifunctional Metallo-Organic Vesicles Displaying Aggregation-Induced Emission: Two-Photon Cell-Imaging, Drug Delivery, and Specific Detection of Zinc Ion. ACS Applied Nano Materials, 2018, 1, 1819-1827.	2.4	28
40	Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4530-4539.	4.0	91
41	Self-Assembly-Triggered Cis-to-Trans Conversion of Azobenzene Compounds. Journal of Physical Chemistry Letters, 2018, 9, 163-169.	2.1	32
42	Allosteric Self-Assembly of Coordinating Terthiophene Amphiphile for Triggered Light Harvesting. Langmuir, 2018, 34, 5935-5942.	1.6	12
43	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	7.8	124
44	Lithium Ion Nanocarriers Self-Assembled from Amphiphiles with Aggregation-Induced Emission Activity. ACS Applied Nano Materials, 2018, 1, 122-131.	2.4	8
45	Frontispiece: Reversible Manipulation of Supramolecular Chirality using Host-Guest Dynamics between Î ² -Cyclodextrin and Alkyl Amines. Chemistry - A European Journal, 2018, 24, .	1.7	0
46	Reversible Manipulation of Supramolecular Chirality using Host–Guest Dynamics between βâ€Cyclodextrin and Alkyl Amines. Chemistry - A European Journal, 2018, 24, 13734-13739.	1.7	23
47	Plastic Supramolecular Films: Caking-Inspired Cold Sintering of Plastic Supramolecular Films as Multifunctional Platforms (Adv. Funct. Mater. 36/2018). Advanced Functional Materials, 2018, 28, 1870255.	7.8	1
48	Cakingâ€Inspired Cold Sintering of Plastic Supramolecular Films as Multifunctional Platforms. Advanced Functional Materials, 2018, 28, 1803370.	7.8	25
49	Fluorescent Polyion Complex for the Detection of Sodium Dodecylbenzenesulfonate. Polymers, 2018, 10, 657.	2.0	9
50	Coordinating Self-Assembly of Copper Perylenetetracarboxylate Nanorods: Selectively Lighting up Normal Cells around Cancerous Ones for Better Cancer Diagnosis. ACS Applied Materials & Camp; Interfaces, 2018, 10, 17630-17638.	4.0	8
51	Dye-sensitized photoelectrochemical water oxidation through a buried junction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6946-6951.	3.3	25
52	Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads. Materials Science and Engineering C, 2017, 75, 637-645.	3.8	13
53	White emission thin films based on rationally designed supramolecular coordination polymers. Journal of Materials Chemistry C, 2017, 5, 5083-5089.	2.7	12
54	Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21706-21714.	4.0	39

#	Article	IF	Citations
55	Giant capsids from lattice self-assembly of cyclodextrin complexes. Nature Communications, 2017, 8, 15856.	5.8	65
56	Concentration-tailored self-assembly composition and function of the coordinating self-assembly of perylenetetracarboxylate. Journal of Materials Chemistry C, 2017, 5, 8936-8943.	2.7	16
57	Lamellar supramolecular materials based on a chelated metal complex for organic dye adsorption. RSC Advances, 2016, 6, 33295-33301.	1.7	4
58	Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27987-27995.	4.0	45
59	A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: insight into the role of electrical charge in cancer cell division. Chemical Communications, 2016, 52, 12466-12469.	2.2	41
60	Kinetic trapping $\hat{a}\in$ " a strategy for directing the self-assembly of unique functional nanostructures. Chemical Communications, 2016, 52, 11870-11884.	2.2	100
61	Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency. Scientific Reports, 2016, 6, 31339.	1.6	39
62	General Approach To Construct Photoresponsive Self-Assembly in a Light-Inert Amphiphilic System. Langmuir, 2016, 32, 11973-11979.	1.6	13
63	Understanding the Structure of Reversible Coordination Polymers Based on Europium in Electrostatic Assemblies Using Time-Resolved Luminescence. Langmuir, 2016, 32, 5830-5837.	1.6	4
64	Chain length dependent alkane/ \hat{l}^2 -cyclodextrin nonamphiphilic supramolecular building blocks. Soft Matter, 2016, 12, 1579-1585.	1.2	31
65	Allostery in molecular self-assemblies: metal ions triggered self-assembly and emissions of terthiophene. Chemical Communications, 2016, 52, 4876-4879.	2.2	16
66	Adaptive soft molecular self-assemblies. Soft Matter, 2016, 12, 337-357.	1.2	129
67	Influence of SDS on the Lα-phases of siloxane surfactant swollen by glycerol. Colloid and Polymer Science, 2015, 293, 3177-3187.	1.0	1
68	Self-Assembly of Channel Type Î ² -CD Dimers Induced by Dodecane. Scientific Reports, 2015, 4, 7533.	1.6	24
69	Combining superior surface enhanced Raman scattering and photothermal conversion on one platform: a strategy of ill-defined gold nanoparticles. RSC Advances, 2015, 5, 27120-27125.	1.7	2
70	Hydrogel formed by the co-assembly of sodium laurate and silica nanoparticles. RSC Advances, 2015, 5, 106005-106011.	1.7	6
71	A protocol of self-assembled monolayers of fluorescent block molecules for trace Zn(<scp>ii</scp>) sensing: structures and mechanisms. RSC Advances, 2015, 5, 106061-106067.	1.7	11
72	Temperature dependent coordinating self-assembly. Soft Matter, 2015, 11, 2806-2811.	1.2	28

#	Article	IF	Citations
73	Suppressing singlet oxygen formation from 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin using polyion complex micelles. RSC Advances, 2015, 5, 17253-17256.	1.7	7
74	One platform solid multicolour emission of terthiophene compounds controlled by mixed self-assembly. Soft Matter, 2015, 11, 2752-2757.	1.2	6
75	Electrostatic Polyion Micelles with Fluorescence and MRI Dual Functions. Langmuir, 2015, 31, 7926-7933.	1.6	17
76	Advanced Molecular Self-Assemblies Facilitated by Simple Molecules. Langmuir, 2014, 30, 14375-14384.	1.6	46
77	Self-Assembly of Ultralong Polyion Nanoladders Facilitated by Ionic Recognition and Molecular Stiffness. Journal of the American Chemical Society, 2014, 136, 1942-1947.	6.6	70
78	Smart Nanocarrier: Self-Assembly of Bacteria-like Vesicles with Photoswitchable Cilia. ACS Nano, 2014, 8, 11341-11349.	7.3	75
79	Supramolecular self-assembly enhanced europium(iii) luminescence under visible light. Soft Matter, 2014, 10, 4686.	1.2	29
80	Conductive porphyrin helix from ternary self-assembly systems. Chemical Communications, 2014, 50, 13537-13539.	2.2	14
81	Reversible Transition between SDS@2β-CD Microtubes and Vesicles Triggered by Temperature. Langmuir, 2014, 30, 3381-3386.	1.6	52
82	Phase behavior and microstructures in a mixture of anionic Gemini and cationic surfactants. Soft Matter, 2014, 10, 4506.	1.2	35
83	Hierarchical molecular self-assemblies: construction and advantages. Soft Matter, 2014, 10, 3362.	1.2	55
84	Self-Assembly of Nonionic Surfactant Tween $20@2\hat{l}^2$ -CD Inclusion Complexes in Dilute Solution. Langmuir, 2013, 29, 13175-13182.	1.6	63
85	A case of cyclodextrin-catalyzed self-assembly of an amphiphile into microspheres. Soft Matter, 2013, 9, 7710.	1.2	11
86	The advantage of reversible coordination polymers in producing visible light sensitized Eu(iii) emissions over EDTA via excluding water from the coordination sphere. Physical Chemistry Chemical Physics, 2013, 15, 16641.	1.3	20
87	Controlled mixing of lanthanide(iii) ions in coacervate core micelles. Chemical Communications, 2013, 49, 3736.	2.2	57
88	Decreasing operating potential for water electrolysis to hydrogen via local confinement of iron-based soft coordination suprapolymers. Physical Chemistry Chemical Physics, 2013, 15, 15912.	1.3	1
89	Metal-driven hierarchical self-assembled zigzag nanoarchitectures with electrical conductivity. Chemical Communications, 2013, 49, 704-706.	2.2	24
90	Studying of 1-D assemblies in anionic azo dyes and cationic surfactants mixed systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 10-18.	2.3	11

#	Article	IF	CITATIONS
91	Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications. Journal of Materials Chemistry, 2012, 22, 18314.	6.7	89
92	Enzyme-triggered model self-assembly in surfactant–cyclodextrin systems. Chemical Communications, 2012, 48, 7347.	2.2	66
93	Soft coordination supramolecular polymers: novel materials for dual electro-catalysis. RSC Advances, 2012, 2, 12732.	1.7	5
94	A Case of Adaptive Self-Assembly. ACS Nano, 2012, 6, 1004-1010.	7.3	15
95	Redox-Gated Potential Micellar Carriers Based on Electrostatic Assembly of Soft Coordination Suprapolymers. Langmuir, 2012, 28, 5548-5554.	1.6	18
96	Extremely pH-sensitive fluids based on a rationally designed simple amphiphile. Soft Matter, 2012, 8, 9079.	1.2	37
97	A surfactant-assisted unimolecular platform for multicolor emissions. Soft Matter, 2012, 8, 10472.	1.2	15
98	Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers. Journal of Colloid and Interface Science, 2012, 369, 238-244.	5.0	36
99	Unveil the potential function of CD in surfactant systems. Physical Chemistry Chemical Physics, 2011, 13, 9074.	1.3	49
100	Fluorescence enhancement by microphase separation-induced chain extension of Eu3+ coordination polymers: phenomenon and analysis. Soft Matter, 2011, 7, 2720.	1.2	23
101	Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter, 2011, 7, 6385.	1.2	64
102	Aqueous self-assembly of SDS@2β-CD complexes: lamellae and vesicles. Soft Matter, 2011, 7, 1726-1731.	1.2	124
103	Effect of pH on Complex Coacervate Core Micelles from Fe(III)-Based Coordination Polymer. Langmuir, 2011, 27, 14776-14782.	1.6	22
104	Zwitterionic surfactant/cyclodextrin hydrogel: microtubes and multiple responses. Soft Matter, 2011, 7, 10417.	1.2	78
105	Promoted formation of coordination polyelectrolytes by layer-by-layer assembly. Soft Matter, 2011, 7, 3565.	1.2	23
106	Versatility of cyclodextrins in self-assembly systems of amphiphiles. Advances in Colloid and Interface Science, 2011, 169, 13-25.	7.0	138
107	Hierarchical assemblies of coordination supramolecules. Coordination Chemistry Reviews, 2010, 254, 1072-1080.	9.5	101
108	General rules for the scaling behavior of linear wormlike micelles formed in catanionic surfactant systems. Journal of Colloid and Interface Science, 2010, 348, 491-497.	5.0	44

#	Article	IF	Citations
109	Complex Coacervate Core Micelles from Iron-Based Coordination Polymers. Journal of Physical Chemistry B, 2010, 114, 8313-8319.	1.2	52
110	Selectivity and Stoichiometry Boosting of β-Cyclodextrin in Cationic/Anionic Surfactant Systems: When Hostâ^'Guest Equilibrium Meets Biased Aggregation Equilibrium. Journal of Physical Chemistry B, 2010, 114, 2165-2174.	1.2	33
111	Unique Temperature-Dependent Supramolecular Self-Assembly: From Hierarchical 1D Nanostructures to Super Hydrogel. Journal of Physical Chemistry B, 2010, 114, 11725-11730.	1.2	100
112	Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter, 2010, 6, 902.	1.2	119
113	Tunable One-Dimensional Helical Nanostructures: From Supramolecular Self-Assemblies to Silica Nanomaterials. Chemistry of Materials, 2010, 22, 6711-6717.	3.2	55
114	"Annular Ring―microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter, 2010, 6, 1731.	1.2	104
115	Unprecedented parallel packing of unsymmetrical bolaamphiphiles driven by π–π stacking of cinnamoyl groups. Soft Matter, 2010, 6, 3282.	1.2	23
116	Redox responsive molecular assemblies based on metallic coordination polymers. Soft Matter, 2010, 6, 3244.	1.2	25
117	Rationally designed helical nanofibers via multiple non-covalent interactions: fabrication and modulation. Soft Matter, 2010, 6, 2031.	1.2	48
118	Metal-Driven Hierarchical Self-Assembled One-Dimensional Nanohelices. Nano Letters, 2009, 9, 4500-4504.	4.5	154
119	Recent advances in the mixed systems of bolaamphiphiles and oppositely charged conventional surfactants. Journal of Colloid and Interface Science, 2009, 337, 1-10.	5.0	50
120	Polypeptide Nanoribbon Hydrogels Assembled through Multiple Supramolecular Interactions. Langmuir, 2009, 25, 12899-12908.	1.6	18
121	Special Effect of \hat{l}^2 -Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems. Journal of Physical Chemistry B, 2009, 113, 7498-7504.	1.2	90
122	Capacity-controllable nanocarriers for metal ions. Soft Matter, 2009, 5, 790-796.	1.2	16
123	Phase and self-assembly transition induced by glycerol–borax interaction in an aqueous surfactant two-phase system. Soft Matter, 2009, 5, 4250.	1.2	5
124	Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems. Soft Matter, 2009, 5, 3047.	1.2	122
125	Nanoribbons Selfâ€Assembled from Triblock Peptide Polymers and Coordination Polymers. Angewandte Chemie - International Edition, 2008, 47, 4192-4195.	7.2	54
126	Stability of Complex Coacervate Core Micelles Containing Metal Coordination Polymer. Journal of Physical Chemistry B, 2008, 112, 10908-10914.	1.2	58

#	Article	IF	CITATION
127	Spherocylindrical coacervate core micelles formed by a supramolecular coordination polymer and a diblock copolymer. Soft Matter, 2008, 4, 2207.	1.2	28
128	Characteristic Differences in the Formation of Complex Coacervate Core Micelles from Neodymium and Zinc-Based Coordination Polymers. Journal of Physical Chemistry B, 2007, 111, 5811-5818.	1.2	34
129	Wormlike Aggregates from a Supramolecular Coordination Polymer and a Diblock Copolymer. Journal of Physical Chemistry B, 2007, 111, 11662-11669.	1.2	47
130	Swelling of Lα-Phases by Matching the Refractive Index of the Water⠑Glycerol Mixed Solvent and that of the Bilayers in the Block Copolymer System of (EO)15⠑(PDMS)15⠒(EO)15. Journal of Physical Chemistry B, 2007, 111, 6374-6382.	1.2	36
131	Molecular Packing Parameter in Bolaamphiphile Solutions:Â Adjustment of Aggregate Morphology by Modifying the Solution Conditions. Journal of Physical Chemistry B, 2007, 111, 2225-2230.	1.2	92
132	Hierarchical Self-Assembly in Solutions Containing Metal Ions, Ligand, and Diblock Copolymer. Angewandte Chemie - International Edition, 2007, 46, 1807-1809.	7.2	101
133	Clouding:Â Origin of Phase Separation in Oppositely Charged Polyelectrolyte/Surfactant Mixed Solutions. Journal of Physical Chemistry B, 2006, 110, 1949-1954.	1.2	19
134	Influence of Hydrocarbon Surfactant on the Aggregation Behavior of Silicone Surfactant:Â Observation of Intermediate Structures in the Vesicleâ°Micelle Transition. Journal of Physical Chemistry B, 2006, 110, 5621-5626.	1.2	39
135	Organized Assemblies in Bolaamphiphile/Oppositely Charged Conventional Surfactant Mixed Systems. Journal of Physical Chemistry B, 2005, 109, 357-364.	1.2	59
136	Vesicles with Superior Stability at High Temperature. Journal of Physical Chemistry B, 2003, 107, 1479-1482.	1.2	33
137	Aggregates Transition Depending on the Concentration in the Cationic Bolaamphiphile/SDS Mixed Systems. Langmuir, 2003, 19, 972-974.	1.6	42
138	Cyclodextrin-catalyzed self-assembly of a coordinating fluorescent molecule into microflowers. Soft Matter, 0, , .	1.2	4