List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1801218/publications.pdf Version: 2024-02-01

	22099	32761
11,837	59	100
citations	h-index	g-index
224	224	8195
docs citations	times ranked	citing authors
	citations 224	11,837 59 citations h-index 224 224

#	Article	IF	CITATIONS
1	Solution processable small molecules for organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6392.	6.7	555
2	Highâ€Efficiency Fluorescent Organic Lightâ€Emitting Devices Using Sensitizing Hosts with a Small Singlet–Triplet Exchange Energy. Advanced Materials, 2014, 26, 5050-5055.	11.1	496
3	Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Materials Horizons, 2016, 3, 145-151.	6.4	430
4	Strategies to Design Bipolar Small Molecules for OLEDs: Donorâ€Acceptor Structure and Nonâ€Donorâ€Acceptor Structure. Advanced Materials, 2011, 23, 1137-1144.	11.1	399
5	Recent progress in solution processable TADF materials for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5577-5596.	2.7	370
6	Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie - International Edition, 2018, 57, 2889-2893.	7.2	350
7	Toward Highly Efficient Solidâ€State White Lightâ€Emitting Electrochemical Cells: Blueâ€Green to Red Emitting Cationic Iridium Complexes with Imidazoleâ€Type Ancillary Ligands. Advanced Functional Materials, 2009, 19, 2950-2960.	7.8	298
8	Solid-state light-emitting electrochemical cells based on ionic iridium(iii) complexes. Journal of Materials Chemistry, 2012, 22, 4206.	6.7	284
9	Blueâ€Emitting Cationic Iridium Complexes with 2â€(1 <i>H</i> â€Pyrazolâ€1â€yl)pyridine as the Ancillary Ligand for Efficient Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2008, 18, 2123-2131.	7.8	276
10	Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Advanced Materials, 2017, 29, 1603253.	11.1	224
11	Versatile Indolocarbazoleâ€Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Rollâ€Off. Advanced Materials, 2018, 30, 1705406.	11.1	217
12	Highly efficient blue thermally activated delayed fluorescent OLEDs with record-low driving voltages utilizing high triplet energy hosts with small singlet–triplet splittings. Chemical Science, 2016, 7, 3355-3363.	3.7	195
13	Blocking Energy‣oss Pathways for Ideal Fluorescent Organic Lightâ€Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers. Advanced Materials, 2018, 30, 1705250.	11.1	177
14	Highly efficient hybrid warm white organic light-emitting diodes using a blue thermally activated delayed fluorescence emitter: exploiting the external heavy-atom effect. Light: Science and Applications, 2015, 4, e232-e232.	7.7	171
15	Highly Efficient Blue-Green and White Light-Emitting Electrochemical Cells Based on a Cationic Iridium Complex with a Bulky Side Group. Chemistry of Materials, 2010, 22, 3535-3542.	3.2	166
16	Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. Journal of Physical Chemistry C, 2014, 118, 7569-7578.	1.5	142
17	Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 nm. Chemistry of Materials, 2017, 29, 4775-4782.	3.2	138
18	Synthesis, Structure, Properties, and Application of a Carbazoleâ€Based Diaza[7]helicene in a Deepâ€Blueâ€Emitting OLED. Chemistry - A European Journal, 2012, 18, 8092-8099.	1.7	133

#	Article	IF	CITATIONS
19	Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2014, 2, 8191-8197.	2.7	131
20	Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color Stability through Enhanced FA¶rster Energy Transfer. ACS Applied Materials & Interfaces, 2015, 7, 28693-28700.	4.0	128
21	High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. Journal of Materials Chemistry, 2011, 21, 4918.	6.7	122
22	Towards High Efficiency and Low Rollâ€Off Orange Electrophosphorescent Devices by Fine Tuning Singlet and Triplet Energies of Bipolar Hosts Based on Indolocarbazole/1, 3, 5â€Triazine Hybrids. Advanced Functional Materials, 2014, 24, 3551-3561.	7.8	117
23	High-Mobility Solution-Processed Tin Oxide Thin-Film Transistors with High-Î⁰ Alumina Dielectric Working in Enhancement Mode. ACS Applied Materials & Interfaces, 2014, 6, 20786-20794.	4.0	113
24	Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex. ACS Applied Materials & Interfaces, 2016, 8, 3825-3832.	4.0	112
25	Ultrahighâ€Efficiency Green PHOLEDs with a Voltage under 3 V and a Power Efficiency of Nearly 110 lm W ^{â^'1} at Luminance of 10 000 cd m ^{â^'2} . Advanced Materials, 2017, 29, 1702847.	11.1	112
26	Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet–Triplet Splitting. ACS Applied Materials & Interfaces, 2017, 9, 4769-4777.	4.0	107
27	Tuning of Charge Balance in Bipolar Host Materials for Highly Efficient Solution-Processed Phosphorescent Devices. Organic Letters, 2011, 13, 3146-3149.	2.4	102
28	Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Applied Physics Letters, 2007, 90, 012119.	1.5	101
29	Enhanced stability of blue-green light-emitting electrochemical cells based on a cationic iridium complex with 2-(1-phenyl-1H-pyrazol-3-yl)pyridine as the ancillary ligand. Chemical Communications, 2011, 47, 6467.	2.2	98
30	Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System. Advanced Materials, 2016, 28, 106-110.	11.1	98
31	Controlling the Recombination Zone of White Organic Lightâ€Emitting Diodes with Extremely Long Lifetimes. Advanced Functional Materials, 2011, 21, 3540-3545.	7.8	94
32	Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy and Environmental Science, 2016, 9, 3424-3428.	15.6	94
33	A Pyridineâ€Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2011, 21, 1881-1886.	7.8	93
34	Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.	4.0	91
35	Towards ideal electrophosphorescent devices with low dopant concentrations: the key role of triplet up-conversion. Journal of Materials Chemistry C, 2014, 2, 8983-8989.	2.7	90
36	Efficient Near-Infrared-Emitting Cationic Iridium Complexes as Dopants for OLEDs with Small Efficiency Roll-off. Journal of Physical Chemistry C, 2012, 116, 11658-11664.	1.5	89

#	Article	IF	CITATIONS
37	High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion. Chemical Science, 2016, 7, 2888-2895.	3.7	88
38	High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 6446.	2.7	87
39	Extremely low driving voltage electrophosphorescent green organic light-emitting diodes based on a host material with small singlet–triplet exchange energy without p- or n-doping layer. Organic Electronics, 2013, 14, 260-266.	1.4	85
40	Thermally Activated Delayed Fluorescence Sensitized Phosphorescence: A Strategy To Break the Trade-Off between Efficiency and Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2015, 7, 15154-15159.	4.0	85
41	Highly-efficient blue electroluminescence based on two emitter isomers. Applied Physics Letters, 2004, 84, 1513-1515.	1.5	81
42	Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Advances, 2015, 5, 75-84.	1.7	81
43	Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host. Applied Physics Letters, 2008, 92, 263301.	1.5	79
44	Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material. Journal of Physical Chemistry C, 2012, 116, 19451-19457.	1.5	79
45	High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells. Applied Physics Letters, 2002, 81, 3540-3542.	1.5	77
46	High-efficiency orange to near-infrared emissions from bis-cyclometalated iridium complexes with phenyl-benzoquinoline isomers as ligands. Journal of Materials Chemistry, 2009, 19, 6573.	6.7	76
47	Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants. Organic Electronics, 2010, 11, 1185-1191.	1.4	76
48	A π–D and π–A Exciplexâ€Forming Host for Highâ€Efficiency and Longâ€Lifetime Singleâ€Emissiveâ€Layer Fluorescent White Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2004040.	11.1	76
49	Sterically Shielded Electron Transporting Material with Nearly 100% Internal Quantum Efficiency and Long Lifetime for Thermally Activated Delayed Fluorescent and Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 19040-19047.	4.0	75
50	Universal Trap Effect in Carrier Transport of Disordered Organic Semiconductors: Transition from Shallow Trapping to Deep Trapping. Journal of Physical Chemistry C, 2014, 118, 10651-10660.	1.5	74
51	Novel star-shaped host materials for highly efficient solution-processed phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6131.	6.7	71
52	Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes. Organic Electronics, 2010, 11, 1344-1350.	1.4	70
53	Highâ€stability organic redâ€light photodetector for narrowband applications. Laser and Photonics Reviews, 2016, 10, 473-480.	4.4	69
54	Highâ€Performance Fluorescent Organic Lightâ€Emitting Diodes Utilizing an Asymmetric Anthracene Derivative as an Electronâ€Transporting Material. Advanced Materials, 2018, 30, e1707590.	11.1	68

#	Article	IF	CITATIONS
55	Impacts of Sn precursors on solution-processed amorphous zinc–tin oxide films and their transistors. RSC Advances, 2012, 2, 5307.	1.7	66
56	Synthesis, Characterization, and Photophysical and Electroluminescent Properties of Blue-Emitting Cationic Iridium(III) Complexes Bearing Nonconjugated Ligands. Inorganic Chemistry, 2014, 53, 6596-6606.	1.9	66
57	Synthesis, Crystal Structure, and Luminescent Properties of a Binuclear Gallium Complex with Mixed Ligands. Inorganic Chemistry, 2004, 43, 5096-5102.	1.9	65
58	Control of Intramolecular π–π Stacking Interaction in Cationic Iridium Complexes via Fluorination of Pendant Phenyl Rings. Inorganic Chemistry, 2012, 51, 4502-4510.	1.9	63
59	Bipolar Host with Multielectron Transport Benzimidazole Units for Low Operating Voltage and High Power Efficiency Solution-Processed Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 7303-7314.	4.0	60
60	Efficient solution-processed electrophosphorescent devices using ionic iridium complexes as the dopants. Organic Electronics, 2009, 10, 152-157.	1.4	59
61	Bright single-active layer small-molecular organic light-emitting diodes with a polytetrafluoroethylene barrier. Applied Physics Letters, 2003, 82, 155-157.	1.5	58
62	Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.	6.7	56
63	Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices. Tetrahedron, 2007, 63, 10161-10168.	1.0	55
64	High-Efficiency Narrow-Band Electro-Fluorescent Devices with Thermally Activated Delayed Fluorescence Sensitizers Combined Through-Bond and Through-Space Charge Transfers. CCS Chemistry, 2020, 2, 1268-1277.	4.6	55
65	Increased phosphorescent quantum yields of cationic iridium(<scp>iii</scp>) complexes by wisely controlling the counter anions. Chemical Communications, 2014, 50, 530-532.	2.2	51
66	Colour-tunable asymmetric cyclometalated Pt(<scp>ii</scp>) complexes and STM-assisted stability assessment of ancillary ligands for OLEDs. Journal of Materials Chemistry C, 2016, 4, 2560-2565.	2.7	51
67	New Insights into Tunable Volatility of Ionic Materials through Counterâ€ I on Control. Advanced Functional Materials, 2016, 26, 3438-3445.	7.8	51
68	Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular <i>ï€</i> – <i>ï€</i> stacking interactions. Nanotechnology, 2016, 27, 094001.	1.3	51
69	Ethynylphenyl-Linked Carbazoles as a Single-Emitting Component for White Organic Light-Emitting Diodes. Chemistry of Materials, 2009, 21, 4638-4644.	3.2	49
70	Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport. Applied Surface Science, 2007, 253, 6047-6051.	3.1	48
71	A Comparison Study of the Organic Small Molecular Thin Films Prepared by Solution Process and Vacuum Deposition: Roughness, Hydrophilicity, Absorption, Photoluminescence, Density, Mobility, and Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 14278-14284.	1.5	47
72	Solution-processed blue–green organic light-emitting diodes based on cationic iridium complexes with 1-pyridyl-3-methylimidazolin-2-ylidene-C,C2′ as the ancillary ligand. Organic Electronics, 2012, 13, 1277-1288.	1.4	46

#	Article	IF	CITATIONS
73	Air Stable Organic Salt As an n-Type Dopant for Efficient and Stable Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 6444-6450.	4.0	46
74	Fabrication of highly oriented large-scale TIPS pentacene crystals and transistors by the Marangoni effect-controlled growth method. Physical Chemistry Chemical Physics, 2015, 17, 6274-6279.	1.3	45
75	A combinational molecular design to achieve highly efficient deep-blue electrofluorescence. Journal of Materials Chemistry C, 2018, 6, 745-753.	2.7	45
76	Charge Transport in Mixed Organic Disorder Semiconductors: Trapping, Scattering, and Effective Energetic Disorder. Journal of Physical Chemistry C, 2012, 116, 19748-19754.	1.5	44
77	Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices. Organic Letters, 2014, 16, 1140-1143.	2.4	42
78	Exploiting p-Type Delayed Fluorescence in Hybrid White OLEDs: Breaking the Trade-off between High Device Efficiency and Long Lifetime. ACS Applied Materials & Interfaces, 2016, 8, 23197-23203.	4.0	42
79	A new type of light-emitting naphtho[2,3-c][1,2,5]thiadiazole derivatives: synthesis, photophysical characterization and transporting properties. Journal of Materials Chemistry, 2008, 18, 806.	6.7	41
80	Pure red electroluminescence from a host material of binuclear gallium complex. Applied Physics Letters, 2002, 81, 4913-4915.	1.5	40
81	Substituted azomethine–zinc complexes: Thermal stability, photophysical, electrochemical and electron transport properties. Inorganica Chimica Acta, 2009, 362, 2327-2333.	1.2	38
82	Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Organic Electronics, 2016, 37, 346-351.	1.4	38
83	Homoepitaxy Growth of Well-Ordered Rubrene Thin Films. Crystal Growth and Design, 2008, 8, 1617-1622.	1.4	37
84	Highly efficient blue-green organic light-emitting diodes achieved by controlling the anionic migration of cationic iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2016, 4, 5731-5738.	2.7	36
85	Enhancing the Overall Performances of Blue Light-Emitting Electrochemical Cells by Using an Electron-Injecting/Transporting Ionic Additive. ACS Applied Materials & Interfaces, 2018, 10, 11801-11809.	4.0	35
86	Blue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands: synthesis, photophysical and electrochemical properties, theoretical investigation and electroluminescent devices. Dalton Transactions, 2015, 44, 15914-15923.	1.6	34
87	Simplified single-emitting-layer hybrid white organic light-emitting diodes with high efficiency, low efficiency roll-off, high color rendering index and superior color stability. Organic Electronics, 2017, 49, 242-248.	1.4	34
88	TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. CheM, 2022, 8, 1705-1719.	5.8	34
89	Charge Transport in Amorphous Organic Semiconductors: Effects of Disorder, Carrier Density, Traps, and Scatters. Israel Journal of Chemistry, 2014, 54, 918-926.	1.0	33
90	High-Performance Transistors Based on Zinc Tin Oxides by Single Spin-Coating Process. Langmuir, 2013, 29, 151-157.	1.6	32

#	Article	IF	CITATIONS
91	Influence of Molecular Packing on Intramolecular Reorganization Energy: A Case Study of Small Molecules. Journal of Physical Chemistry C, 2014, 118, 14848-14852.	1.5	31
92	A high triplet energy small molecule based thermally cross-linkable hole-transporting material for solution-processed multilayer blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 243-246.	2.7	31
93	Highâ€Performance Organic Optocouplers Based on a Photosensitive Interfacial C ₆₀ /NPB Heterojunction. Advanced Materials, 2009, 21, 2501-2504.	11.1	29
94	White light emission from an exciplex based on a phosphine oxide type electron transport compound in a bilayer device structure. RSC Advances, 2013, 3, 21453.	1.7	29
95	Simultaneous enhancement of efficiency and stability of OLEDs with thermally activated delayed fluorescence materials by modifying carbazoles with peripheral groups. Science China Chemistry, 2019, 62, 393-402.	4.2	29
96	A perspective on blue TADF materials based on carbazole-benzonitrile derivatives for efficient and stable OLEDs. Applied Physics Letters, 2020, 116, .	1.5	29
97	Amineâ€Directed Formation of Bâ^'N Bonds for BNâ€Fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
98	Highly efficient blue electroluminescence based on a new anthracene derivative. Synthetic Metals, 2004, 141, 245-249.	2.1	28
99	Ideal Bipolar Host Materials with Bis-benzimidazole Unit for Highly Efficient Solution-Processed Green Electrophosphorescent Devices. Organic Letters, 2014, 16, 5346-5349.	2.4	28
100	Rational Design of Chelated Aluminum Complexes toward Highly Efficient and Thermally Stable Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 3693-3700.	3.2	28
101	π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for TADF and phosphorescent devices with low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 3372-3381.	2.7	28
102	Tandem organic light-emitting diodes with KBH_4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer. Optics Express, 2012, 20, 14564.	1.7	27
103	The intramolecular π–π stacking interaction does not always work for improving the stabilities of light-emitting electrochemical cells. Organic Electronics, 2012, 13, 2442-2449.	1.4	27
104	Relationship between Mobilities from Time-of-Flight and Dark-Injection Space-Charge-Limited Current Measurements for Organic Semiconductors: A Monte Carlo Study. Journal of Physical Chemistry C, 2014, 118, 6052-6058.	1.5	26
105	Electroluminescence enhancement by blending PVK with an alternating copolymer containing triphenylamine and phenylene units. Synthetic Metals, 2001, 123, 39-42.	2.1	25
106	Facile Fabrication of Metallic Nanostructures by Tunable Cracking and Transfer Printing. Angewandte Chemie - International Edition, 2011, 50, 12478-12482.	7.2	25
107	Electric Field inside a Hole-Only Device and Insights into Space-Charge-Limited Current Measurement for Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 9990-9995.	1.5	25
108	Highly efficient green phosphorescent organic light-emitting diodes with low efficiency roll-off based on iridium(<scp>iii</scp>) complexes bearing oxadiazol-substituted amide ligands. Journal of Materials Chemistry C, 2016, 4, 5469-5475.	2.7	25

#	Article	IF	CITATIONS
109	Orange-red- and white-emitting diodes fabricated by vacuum evaporation deposition of sublimable cationic iridium complexes. Journal of Materials Chemistry C, 2016, 4, 5051-5058.	2.7	25
110	Toward fluorine-free blue-emitting cationic iridium complexes: to generate emission from the cyclometalating ligands with enhanced triplet energy. Dalton Transactions, 2016, 45, 5604-5613.	1.6	25
111	Novel carbazole/pyridine-based host material for solution-processed blue phosphorescent organic light-emitting devices. Dyes and Pigments, 2012, 92, 891-896.	2.0	24
112	Nonâ€Doped Skyâ€Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low Driven Voltages. Chemistry - an Asian Journal, 2017, 12, 2189-2196.	1.7	24
113	Multilayer blue polymer light-emitting devices with spin-coated interlayers. Synthetic Metals, 2007, 157, 343-346.	2.1	23
114	Stable blue-green light-emitting electrochemical cells based on a cationic iridium complex with phenylpyrazole as the cyclometalated ligands. Organic Electronics, 2012, 13, 1948-1955.	1.4	23
115	Morphological Structure and Optical Property of Anthracene Single Crystals Grown from Solution. Japanese Journal of Applied Physics, 2007, 46, 7789.	0.8	22
116	Thermally Decomposable Lithium Nitride as an Electron Injection Material for Highly Efficient and Stable OLEDs. Journal of Physical Chemistry C, 2009, 113, 13386-13390.	1.5	22
117	An Ambipolar Transporting Naphtho[2,3-c][1,2,5]thiadiazole Derivative with High Electron and Hole Mobilities. Organic Letters, 2009, 11, 2069-2072.	2.4	22
118	A flexible blue light sensitive organic photodiode with high properties for the applications in Iowâ€voltageâ€control circuit and flexion sensors. Laser and Photonics Reviews, 2014, 8, 316-323.	4.4	22
119	Multifunctional Organic Phototransistor-based Nonvolatile Memory Achieved by UV/Ozone Treatment of the Ta ₂ O ₅ Gate Dielectric. ACS Applied Materials & Interfaces, 2014, 6, 8337-8344.	4.0	22
120	High efficiency red phosphorescent organic light-emitting diodes with low dopant concentration, low roll-off and long lifetime based on a novel host material with thermally activated delayed fluorescent properties. Organic Electronics, 2018, 57, 53-59.	1.4	22
121	A novel hyperbranched conjugated polymer for electroluminescence application. Synthetic Metals, 2001, 124, 373-377.	2.1	21
122	Efficient blue-green and white organic light-emitting diodes withÂaÂsmall-molecule host and cationic iridium complexes asÂdopants. Applied Physics A: Materials Science and Processing, 2010, 100, 1035-1040.	1.1	21
123	Tetraphenylborate versus tetraimidazolylborate as counterions for cationic iridium(<scp>iii</scp>) complexes: enhanced electrochemical stabilities and electroluminescence. Dalton Transactions, 2015, 44, 8521-8528.	1.6	21
124	Multifunctional emitters for efficient simplified non-doped blueish green organic light emitting devices with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 6527-6536.	2.7	21
125	Toward Highâ€Performance Vacuumâ€Đeposited OLEDs: Sublimable Cationic Iridium(III) Complexes with Yellow and Orange Electroluminescence. Chemistry - A European Journal, 2018, 24, 5574-5583.	1.7	21
126	Fluorine-free, highly efficient, blue-green and sky-blue-emitting cationic iridium complexes and their use for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1509-1520.	2.7	21

#	Article	lF	CITATIONS
127	Synthesis, Structures, and Optical Properties of Cadmium Iodide/Phenethylamine Hybrid Materials with Controlled Structures and Emissions. Inorganic Chemistry, 2007, 46, 10252-10260.	1.9	20
128	Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. Journal of Materials Chemistry, 2011, 21, 5312.	6.7	20
129	<i>Review Paper</i> : Progress on efficient cathodes for organic lightâ€emitting diodes. Journal of the Society for Information Display, 2011, 19, 453-461.	0.8	20
130	Stable and efficient blue fluorescent organic light-emitting diode by blade coating with or without electron-transport layer. Organic Electronics, 2017, 51, 6-15.	1.4	20
131	Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device. Applied Physics Letters, 2004, 85, 4496.	1.5	19
132	Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer. Applied Physics Letters, 2012, 100, .	1.5	19
133	Organic cesium salt as an efficient electron injection material for organic light-emitting diodes. Applied Physics Letters, 2008, 93, 183302.	1.5	18
134	Low-Temperature Evaporable Re ₂ O ₇ : An Efficient p-Dopant for OLEDs. Journal of Physical Chemistry C, 2013, 117, 13763-13769.	1.5	18
135	Phosphorescent cationic iridium complexes with phenyl-imidazole type cyclometalating ligands: A combined experimental and theoretical study on photophysical, electrochemical and electroluminescent properties. Dyes and Pigments, 2016, 131, 76-83.	2.0	18
136	Using an organic radical precursor as an electron injection material for efficient and stable organic light-emitting diodes. Nanotechnology, 2016, 27, 174001.	1.3	18
137	Sublimable Cationic Iridium(III) Complexes with 1,10â€Phenanthroline Derivatives as Ancillary Ligands for Highly Efficient and Polychromic Electroluminescence. Chemistry - A European Journal, 2016, 22, 15888-15895.	1.7	17
138	Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode. Journal Physics D: Applied Physics, 2009, 42, 075103.	1.3	16
139	Ambipolar Transporting 1,2â€Benzanthracene Derivative with Efficient Green Excimer Emission for Singleâ€Layer Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2013, 1, 167-172.	3.6	16
140	Enhanced mobility of solution-processed polycrystalline zinc tin oxide thin-film transistors via direct incorporation of water into precursor solution. Applied Physics Letters, 2014, 105, .	1.5	16
141	Multifunctional Materials for High-Performance Double-Layer Organic Light-Emitting Diodes: Comparison of Isomers with and without Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2017, 9, 17279-17289.	4.0	16
142	Synthesis and properties of a thiophene-substituted diaza[7]helicene for application as a blue emitter in organic light-emitting diodes. Tetrahedron Letters, 2017, 58, 531-535.	0.7	16
143	Study of the Hole and Electron Transport in Amorphous 9,10-Di-(2′-naphthyl)anthracene: The First-Principles Approach. Journal of Physical Chemistry C, 2013, 117, 16336-16342.	1.5	15
144	Systematic Investigation of Surface Modification by Organosiloxane Self-Assembled on Indium–Tin Oxide for Improved Hole Injection in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2014, 6, 4570-4577.	4.0	15

#	Article	IF	CITATIONS
145	General application of blade coating to small-molecule hosts for organic light-emitting diode. Synthetic Metals, 2014, 196, 99-109.	2.1	15
146	Systematically tuning the ΔE _{ST} and charge balance property of bipolar hosts for low operating voltage and high power efficiency solution-processed electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5004-5016.	2.7	15
147	Sustainable phosphorescence based on solution-processable and vacuum-sublimable cationic ruthenium(II) complexes achieved by counter-ion control. Organic Electronics, 2017, 42, 194-202.	1.4	15
148	Organic Radicals Outperform LiF as Efficient Electron-Injection Materials for Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 4769-4773.	2.1	15
149	Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host. Optics Express, 2011, 19, A1265.	1.7	14
150	Transient space-charge-perturbed currents in organic materials: A Monte Carlo study. Organic Electronics, 2014, 15, 524-530.	1.4	14
151	Stable Organic Radicals as Hole Injection Dopants for Efficient Optoelectronics. ACS Applied Materials & Interfaces, 2018, 10, 4882-4886.	4.0	14
152	Synthesis of carbazole-based dendrimer: host material for highly efficient solution-processed blue organic electrophosphorescent diodes. Tetrahedron, 2012, 68, 5800-5805.	1.0	13
153	Efficient doped red light-emitting electrochemical cells based on cationic iridium complexes. Synthetic Metals, 2013, 163, 33-37.	2.1	13
154	Electrophosphorescent devices based on cationic iridium complexes: The effect of fluorinating the pendant phenyl ring of the ancillary ligand on the device performances. Synthetic Metals, 2013, 166, 52-56.	2.1	13
155	Volatilize-Controlled Oriented Growth of the Single-Crystal Layer for Organic Field-Effect Transistors. Langmuir, 2014, 30, 12082-12088.	1.6	13
156	A cationic iridium complex meets an electron-transporting counter-anion: enhanced performances of solution-processed phosphorescent light-emitting diodes. Chemical Communications, 2016, 52, 14466-14469.	2.2	13
157	Experimental and theoretical study of the charge transport property of 4,4′-N,N′-dicarbazole-biphenyl. Science China Chemistry, 2012, 55, 2428-2432.	4.2	12
158	Improved organic optocouplers based on a deep blue fluorescent OLED and an optimized bilayer heterojunction photosensor. Sensors and Actuators B: Chemical, 2013, 188, 879-885.	4.0	12
159	Cationic iridium(III) complexes with different-sized negative counter-ions for solution-processed deep-blue-emitting diodes. Organic Electronics, 2016, 39, 16-24.	1.4	12
160	Lithium cobalt oxide as electron injection material for high performance organic light-emitting diodes. Applied Physics Letters, 2008, 92, 073301.	1.5	11
161	Study on the Electron Injection Mechanism of Thermally Decomposable Cs ₂ CO ₃ . Japanese Journal of Applied Physics, 2009, 48, 102302.	0.8	11
162	Synthesis of new bipolar materials based on diphenylphosphine oxide and triphenylamine units: efficient host for deep-blue phosphorescent organic light-emitting diodes. Tetrahedron, 2012, 68, 9672-9678.	1.0	11

#	Article	IF	CITATIONS
163	Highly Efficient Hybrid White Tandem Organic Lightâ€Emitting Diodes with MoO ₃ Layer. Chinese Journal of Chemistry, 2015, 33, 859-864.	2.6	11
164	Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties. Science China Chemistry, 2016, 59, 684-691.	4.2	11
165	Multi-scale calculation of the electric properties of organic-based devices from the molecular structure. Organic Electronics, 2016, 33, 164-171.	1.4	11
166	Efficient deep blue emitter based on the integration of phenanthroimidazole, triphenylamine and tetraphenylethene for organic light emitting devices. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 87-92.	2.0	11
167	Nanocomposite Thin Film Based on Ytterbium Fluoride and <i>N,N′</i> -Bis(1-naphthyl)- <i>N,N′</i> -diphenyl-1,1′-biphenyl-4,4′-diamine and Its Application in Orga Light Emitting Diodes as Hole Transport Layer. Journal of Physical Chemistry C, 2008, 112, 11985-11990.	nic5	10
168	Preparation and spectral characteristics of anthracene/tetracene mixed crystals. Science in China Series B: Chemistry, 2009, 52, 181-187.	0.8	10
169	Thermally Decomposable KBH4as an Efficient Electron Injection Material for Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2009, 48, 080205.	0.8	10
170	Formation, confirmation and application of Li : Al alloy as an electron injection layer with Li ₃ N as the precursor. Journal Physics D: Applied Physics, 2010, 43, 252001.	1.3	10
171	Positional Disorder-Induced Mobility Enhancement in Rapidly Cooled Organic Semiconductor Melts. Journal of Physical Chemistry C, 2010, 114, 9056-9061.	1.5	10
172	Modulated intermolecular electrostatic interaction and morphology transition in squarylium dyes based organic field-effect transistors. Organic Electronics, 2011, 12, 1674-1682.	1.4	10
173	Dark current and photovoltage models on the formation of depletion region in C60/NPB organic heterojunctions. Organic Electronics, 2012, 13, 3276-3283.	1.4	10
174	The effect of oxygen content on the performance of low-voltage organic phototransistor memory. Organic Electronics, 2014, 15, 1664-1671.	1.4	10
175	Toward highly efficient blue organic light-emitting diodes: fabricating a good-quality emissive layer cast from suitable solvents. Dalton Transactions, 2016, 45, 6118-6123.	1.6	10
176	Bright White Organic Light-Emitting Diodes Based on Anthracene Derivatives and Rubrene. Japanese Journal of Applied Physics, 2004, 43, L560-L562.	0.8	9
177	The understanding of the memory nature and mechanism of the Ta2O5-gate-dielectric-based organic phototransistor memory. Organic Electronics, 2012, 13, 2917-2923.	1.4	9
178	Performance enhancement of organic light-emitting diodes by chlorinated indium tin oxide in the presence of hydrogen peroxide. Organic Electronics, 2013, 14, 882-887.	1.4	9
179	High-Performance Organic Optocouplers Based on an Organic Photodiode With High Blue Light Sensitivity. IEEE Electron Device Letters, 2013, 34, 1295-1297.	2.2	9
180	Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors. Science China Technological Sciences, 2016, 59, 1407-1412.	2.0	9

#	Article	IF	CITATIONS
181	Deep insights into the viscosity of small molecular solutions for organic light-emitting diodes. RSC Advances, 2018, 8, 4153-4161.	1.7	9
182	Vacuumâ€Deposited versus Spinâ€Coated Emissive Layers for Fabricating Highâ€Performance Blue–Greenâ€Emitting Diodes. ChemPlusChem, 2018, 83, 211-216.	1.3	9
183	High-performance yellow- and orange-emitting diodes based on novel sublimable cationic iridium(<scp>iii</scp>) complexes by ligand control. Journal of Materials Chemistry C, 2018, 6, 5630-5638.	2.7	9
184	Liquid-Formed Glassy Film of <i>N</i> , <i>N</i> , <i>N</i> ,≦~-Diphenyl- <i>N</i> , <i>N</i> â~-bis(3-methylphenyl)benzidine:  Formation, Carrier Transporting Ability, Photoluminescence, and Stability. Journal of Physical Chemistry C, 2007, 111, 18376-18380.	1.5	8
185	One Order of Magnitude Enhancement of Electron Mobility by Rapid Cooling the Melt of an n-Type Organic Semiconductor. Journal of Physical Chemistry C, 2009, 113, 16549-16552.	1.5	8
186	Percolative charge transport in a co-evaporated organic molecular mixture. Organic Electronics, 2013, 14, 3312-3317.	1.4	8
187	Mechanisms of Charge Transport in Transition Metal Oxide Doped Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 29636-29642.	1.5	8
188	Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer layer. Science Bulletin, 2005, 50, 505-508.	1.7	7
189	Synthesis and characterization of nano/micro-structured crystalline germanium dioxide with novel morphology. Science Bulletin, 2009, 54, 2810-2813.	4.3	7
190	New Method of Mobility Measurement for Organic Semiconductors by Optoelectronic Coupling. Journal of Physical Chemistry C, 2012, 116, 5235-5239.	1.5	7
191	Bismuth Trifluoride as a low-temperature-evaporable insulating dopant for efficient and stable organic light-emitting diodes. Organic Electronics, 2014, 15, 2439-2447.	1.4	7
192	Synthesis and electroluminescence properties of a novel poly(paraphenylene vinylene)-based copolymer with tri(ethylene oxide) segments on the backbone. Journal of Applied Polymer Science, 2002, 83, 2195-2200.	1.3	6
193	Synthesis and electroluminescent properties of a novel copolymer with short alternating conjugated and non-conjugated blocks. Polymer International, 2003, 52, 343-346.	1.6	6
194	Highly Integrable Organic Optocouplers on a Patterned Double-Side Indium Tin Oxide Substrate With High Isolation Voltage. IEEE Electron Device Letters, 2015, 36, 171-173.	2.2	6
195	Suppressing Competitive Coordination Reaction for Ohmic Cathode Contact Using Amino-Substituted Organic Ligands and Air-Stable Metals. CCS Chemistry, 2021, 3, 367-376.	4.6	6
196	Amineâ€directed Formation of B–N Bonds for BNâ€fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angewandte Chemie, 0, , .	1.6	6
197	BLUE ELECTROLUMINESCENCE FROM A PROCESSABLE DERIVATIVE OF PPV BASED COPOLYMER WITH TRI(ETHYLENE OXIDE) SIGMENTS IN THE BACKBONE. Synthetic Metals, 2003, 137, 1133-1135.	2.1	5
198	Metal Halide/Nâ€Donor Organic Ligand Hybrid Materials with Confined Energy Gaps and Emissions. European Journal of Inorganic Chemistry, 2008, 2008, 3040-3045.	1.0	5

#	Article	IF	CITATIONS
199	Investigation of an efficient YbF3/Al cathode for tris-(8-hydroxyquinoline)aluminum-based small molecular organic light-emitting diodes. Applied Surface Science, 2008, 254, 7223-7226.	3.1	5
200	Novel Cs2CO3:Ag/Ag Cathode for High-Efficiency Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2009, 48, 020206.	0.8	5
201	Predicting photocurrent tendency of organic photodiodes operating at external bias through optical field modeling. Organic Electronics, 2014, 15, 3231-3236.	1.4	5
202	Multilayer white organic light-emitting diodes with a single host material. Semiconductor Science and Technology, 2006, 21, 1455-1458.	1.0	4
203	Efficient Organic Light-emitting Diode Using Lithium Tetra-(8-hydroxy-quinolinato) Boron as the Electron Injection Layer. Acta Physico-chimica Sinica, 2007, 23, 455-458.	0.6	4
204	Naphthacene-doped and undoped 5,12-naphthacenequinone crystals: Preparation, crystal structures and optical characteristics. Journal of Crystal Growth, 2008, 310, 2537-2542.	0.7	4
205	Co-Actions of Ambient Pressure and Gas Molecular Adsorption on the Carriers' Transport in Polycrystalline Pentacene Thin-Film Transistors. Journal of Physical Chemistry C, 2013, 117, 58-63.	1.5	4
206	Transient space-charge-perturbed currents of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diar and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine in diode structures. Applied Phys Letters, 2014, 104, .	nine si r.s	4
207	A multifunctional ionic iridium complex for field-effect and light-emitting devices. RSC Advances, 2014, 4, 51294-51297.	1.7	4
208	Li : Mg alloy with variable work function as highly efficient cathode for organic light-emitting devices. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3245-3249.	0.8	4
209	Pâ€170: Decomposable Alkali Compounds as Alkali Metal Precursors for Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2007, 38, 834-836.	0.1	3
210	A binuclear aluminum(III) complex: Thermal stability, photophysical, electrochemical and electroluminescent properties. Synthetic Metals, 2007, 157, 713-718.	2.1	3
211	Transparent organic light-emitting diodes based on Cs2CO3:Ag/Ag composite cathode. Science Bulletin, 2010, 55, 1479-1482.	1.7	3
212	Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor. Science China Chemistry, 2011, 54, 651-655.	4.2	3
213	Bipolar charge transport property of N,N′-dicarbazolyl-1,4-dimethene-benzene: A study of the short range order model. Science Bulletin, 2013, 58, 79-83.	1.7	3
214	Programmable and Erasable Pentacene/Ta ₂ O ₅ Phototransistor Memory With Improved Retention Time. IEEE Electron Device Letters, 2014, 35, 741-743.	2.2	3
215	Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors. Nanotechnology, 2016, 27, 465204.	1.3	3
216	Triphenylvinyl anthracene based emitter for non-doped blue light emitting devices with unusual emission behavior. Optical Materials, 2018, 79, 8-11.	1.7	3

#	Article	IF	CITATIONS
217	Investigation of Novel Efficient Electron Injection Lithium Complex Containing Quinoxaline Moiety for Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, L1253-L1255.	0.8	2
218	New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates. Science Bulletin, 2008, 53, 958-960.	4.3	2
219	P-213: Decomposable Precursors as Electron Injection Materials for High Performance Organic Light-Emitting Devices. Digest of Technical Papers SID International Symposium, 2008, 39, 2008.	0.1	2
220	The Interface Modification of Low-Voltage Pentacene-Based Organic Phototransistors. ECS Transactions, 2013, 50, 229-234.	0.3	1
221	[Ir(ppy)2pyim]PF6dielectric mixed with PMMA for area emission transistors. RSC Advances, 2016, 6, 94010-94013.	1.7	0
222	OLEDs using molecular TADF materials as hosts. , 2022, , 289-352.		0