Nagahiro Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1800324/publications.pdf

Version: 2024-02-01

316 7,274 papers citations

44 h-index 69 g-index

320 all docs 320 docs citations 320 times ranked 8143 citing authors

#	Article	IF	CITATIONS
1	Solution plasma process for synthesizing polydiacetylene materials: Toward industrial utilization of colorimetric sensors. Journal of Industrial and Engineering Chemistry, 2022, 106, 243-252.	2.9	13
2	Morphology control of ZnO nanostructures using Zn and W electrodes in solution plasma process. Materials Letters, 2022, 309, 131349.	1.3	4
3	Synthesis of nitrogen-doped carbons from single-source precursors by solution plasma. , 2022, , 475-505.		0
4	Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery. Nano Research, 2022, 15, 3290-3298.	5.8	10
5	Asymmetric Porous and Highly Hydrophilic Sulfonated Cellulose/Biomembrane Functioning as a Separator in a Lithium-lon Battery. ACS Applied Energy Materials, 2022, 5, 6206-6218.	2.5	10
6	Design of three-dimensional isotropic negative-refractive-index metamaterials with wideband response based on an effective-medium approach. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
7	Nitrogen-doped 3D porous graphene coupled with densely distributed CoOx nanoparticles for efficient multifunctional electrocatalysis and Zn-Air battery. Electrochimica Acta, 2022, 420, 140432.	2.6	14
8	A non-flammable, flexible and UV-cured gel polymer electrolyte with crosslinked polymer network for dendrite-suppressing lithium metal batteries. Ionics, 2022, 28, 3743-3759.	1.2	6
9	Layered Perovskite Lithium Yttrium Titanate as a Lowâ€Potential and Ultrahighâ€Rate Anode for Lithiumâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17
10	N-Doped few-layer graphene encapsulated Pt-based bimetallic nanoparticles <i>via</i> solution plasma as an efficient oxygen catalyst for the oxygen reduction reaction. Materials Advances, 2021, 2, 322-335.	2.6	21
11	Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Advances, 2021, 11, 26785-26790.	1.7	8
12	Li–air battery and ORR activity of nanocarbons produced with good synthesis rate by solution plasma process. Materials Advances, 2021, 2, 2636-2641.	2.6	5
13	Deposition of carbon–tungsten carbide on coir pulp to improve its compatibility with polylactic acid. Cellulose, 2021, 28, 4119-4136.	2.4	1
14	Plasma-Assisted Synthesis of Multicomponent Nanoparticles Containing Carbon, Tungsten Carbide and Silver as Multifunctional Filler for Polylactic Acid Composite Films. Polymers, 2021, 13, 991.	2.0	3
15	Insight on Solution Plasma in Aqueous Solution and Their Application in Modification of Chitin and Chitosan. International Journal of Molecular Sciences, 2021, 22, 4308.	1.8	12
16	Facile <i>In Situ</i> Synthesis of Amphiphilic Carbon-Supported Pt: Innovative Catalyst Preparation for Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 5606-5614.	2.5	5
17	Natural Self-Confined Structure Effectively Suppressing Volume Expansion toward Advanced Lithium Storage. ACS Applied Materials & Storage. ACS ACS Applied Materials & Storage. ACS	4.0	5
18	Cationic nitrogen-doped graphene as a p-type modifier for high-performance PEDOT:PSS hole transporters in organic solar cells. Japanese Journal of Applied Physics, 2021, 60, 070902.	0.8	6

#	Article	IF	Citations
19	Reduced Red Mud as the Solar Absorber for Solar-Driven Water Evaporation and Vapor–Electricity Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30556-30564.	4.0	32
20	Structure and properties of nanocarbons-encapsulated WC synthesized by solution plasma process in palm oils. Materials Express, 2021, 11, 1602-1607.	0.2	1
21	High electrical conductivity and oxidation reduction reaction activity of tungsten carbide/carbon nanocomposite synthesized from palm oil by solution plasma process. Materials Express, 2021, 11 , $1587-1593$.	0.2	1
22	Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Oxygen, 2021, 1, 62-72.	1.6	3
23	Synergetic design of dopant-free defect-enriched 3D interconnected hierarchical porous graphene mesh for boosting oxygen reduction reaction. Carbon, 2021, 184, 609-617.	5.4	10
24	Au nanoparticle-decorated TiO ₂ hollow fibers with enhanced visible-light photocatalytic activity toward dye degradation. RSC Advances, 2021, 12, 193-200.	1.7	6
25	Simultaneous deacetylation and degradation of chitin hydrogel by electrical discharge plasma using low sodium hydroxide concentrations. Carbohydrate Polymers, 2020, 228, 115377.	5.1	7
26	Liquid-Phase Plasma-Assisted in Situ Synthesis of Amino-Rich Nanocarbon for Transition Metal Ion Adsorption. ACS Applied Nano Materials, 2020, 3, 218-228.	2.4	18
27	Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method. Cellulose, 2020, 27, 1367-1384.	2.4	33
28	<i>In situ</i> synthesis of copper nanoparticles encapsulated by nitrogen-doped graphene at room temperature <i>via</i> solution plasma. RSC Advances, 2020, 10, 36627-36635.	1.7	17
29	Single-Walled Carbon Nanotubes Wrapped by Cationic Nitrogen-Doped Carbon for Electrocatalytic Applications. ACS Applied Nano Materials, 2020, 3, 10183-10189.	2.4	14
30	Safe, superionic conductive and flexible "polymer-in-plastic salts―electrolytes for dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 33, 442-451.	9.5	22
31	Effect of electrical discharge plasma on cytotoxicity against cancer cells of N,O-carboxymethyl chitosan-stabilized gold nanoparticles. Carbohydrate Polymers, 2020, 237, 116162.	5.1	12
32	Solution plasma: new synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2,4,6-trinitrophenol. Nano Express, 2020, 1, 020043.	1.2	24
33	Synthesis of Nanomaterials Using Solution Plasma Process. , 2019, , 343-355.		2
34	Synthesis of Au Nanoparticles in Natural Matrices by Liquid-Phase Plasma: Effects on Cytotoxic Activity against Normal and Cancer Cell Lines. ACS Applied Nano Materials, 2019, 2, 8051-8062.	2.4	13
35	Enhanced degradation of methylene blue by a solution plasma process catalyzed by incidentally co-generated copper nanoparticles. Water Science and Technology, 2019, 79, 967-974.	1.2	6
36	Quantitative spectrochemical analysis of solution plasma in aromatic molecules. Plasma Processes and Polymers, 2019, 16, e1900012.	1.6	5

#	Article	IF	CITATIONS
37	Solution Plasma-Assisted Green Synthesis of MnO ₂ Adsorbent and Removal of Cationic Pollutant. Journal of Chemistry, 2019, 2019, 1-7.	0.9	13
38	Maximization of sodium storage capacity of pure carbon material used in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 16149-16160.	5.2	41
39	p-Type Doping of Graphene with Cationic Nitrogen. ACS Applied Nano Materials, 2019, 2, 1350-1355.	2.4	48
40	Nitriding an Oxygen-Doped Nanocarbonaceous Sorbent Synthesized via Solution Plasma Process for Improving CO2 Adsorption Capacity. Nanomaterials, 2019, 9, 1776.	1.9	6
41	Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohydrate Polymers, 2019, 205, 472-479.	5.1	35
42	In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells. Japanese Journal of Applied Physics, 2018, 57, 0102BG.	0.8	10
43	Solution Plasma Process-Derived Defect-Induced Heterophase Anatase/Brookite TiO ₂ Nanocrystals for Enhanced Gaseous Photocatalytic Performance. ACS Omega, 2018, 3, 898-905.	1.6	47
44	One-pot synthesis of purple benzene-derived MnO2-carbon hybrids and synergistic enhancement for the removal of cationic dyes. Scientific Reports, 2018, 8, 4342.	1.6	20
45	Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. Japanese Journal of Applied Physics, 2018, 57, 0102B5.	0.8	14
46	Accelerated formation of nanocarbons in solution plasma using benzene substituted with CF ₃ group. Japanese Journal of Applied Physics, 2018, 57, 0102B6.	0.8	0
47	Synthesis of silicon–carbon black composite as anode material for lithium ion battery. Japanese Journal of Applied Physics, 2018, 57, 0102B2.	0.8	2
48	Solution plasma: A new reaction field for nanomaterials synthesis. Japanese Journal of Applied Physics, 2018, 57, 0102A4.	0.8	61
49	Solution plasma applications for the synthesis/modification of inorganic nanostructured materials and the treatment of natural polymers. Japanese Journal of Applied Physics, 2018, 57, 0102A3.	0.8	11
50	Enhancement of nitrogen self-doped nanocarbons electrocatalyst <i>via</i> tune-up solution plasma synthesis. RSC Advances, 2018, 8, 35503-35511.	1.7	7
51	Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 270-281.	2.0	20
52	Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts. Nanomaterials, 2018, 8, 269.	1.9	17
53	Thicknessâ€Dependent Strain Evolution of Epitaxial SrTiO ₃ Thin Films Grown by Ion Beam Sputter Deposition. Crystal Research and Technology, 2018, 53, 1700211.	0.6	5
54	Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. Journal of Alloys and Compounds, 2018, 757, 188-199.	2.8	41

#	Article	IF	Citations
55	Cytotoxicity against cancer cells of chitosan oligosaccharides prepared from chitosan powder degraded by electrical discharge plasma. Carbohydrate Polymers, 2018, 201, 20-30.	5.1	58
56	Enhancing Bifunctional Catalytic Activity of Oxygen Reduction and Evolution Reaction via Oneâ€Pot Formation of MnO ₂ â€Carbon Hybrid Nanocomposite. ChemistrySelect, 2018, 3, 6302-6308.	0.7	11
57	The Initial Reactions from Pyridine to Hetero-Carbon Nanomaterials Through Solution Plasma. Nanoscience and Nanotechnology Letters, 2018, 10, 814-819.	0.4	7
58	The Nano-Structure and Their Properties of Exfoliation Several Layers-Stacked Graphene Prepared from Graphite Dispersed in Aqueous Solutions by Solution Plasma. Nanoscience and Nanotechnology Letters, 2018, 10, 784-789.	0.4	3
59	Nano-Assembled Thin Films of Tetraphenylporphyrin on Amine Silane-Modified Substrate for the Optical Gas Sensor. Nanoscience and Nanotechnology Letters, 2018, 10, 667-674.	0.4	0
60	Crystallinity and surface state of cellulose in wet ballâ€milling process. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
61	The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochimica Acta, 2017, 233, 123-133.	2.6	33
62	Solution plasma synthesis of a boron–carbon–nitrogen catalyst with a controllable bond structure. Physical Chemistry Chemical Physics, 2017, 19, 15264-15272.	1.3	30
63	Conversion of cellulose into reducing sugar by solution plasma process (SPP). Carbohydrate Polymers, 2017, 172, 230-236.	5.1	39
64	The solution plasma process for heteroatom-carbon nanosheets: the role of precursors. Scientific Reports, 2017, 7, 3825.	1.6	36
65	Simple Solution Plasma Synthesis of Hierarchical Nanoporous MnO ₂ for Organic Dye Removal. ACS Sustainable Chemistry and Engineering, 2017, 5, 5842-5851.	3.2	65
66	Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability. Journal of Alloys and Compounds, 2017, 709, 588-595.	2.8	29
67	Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds. Molecular Catalysis, 2017, 432, 160-171.	1.0	19
68	Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydrate Polymers, 2017, 167, 1-11.	5.1	44
69	Generation of nonâ€equilibrium condition in solution plasma discharge using lowâ€pass filter circuit. Plasma Processes and Polymers, 2017, 14, 1600163.	1.6	6
70	Synthesis of Few-Layer Graphene by Peeling Graphite Flakes via Electron Exchange in Solution Plasma. Journal of Physical Chemistry C, 2017, 121, 23793-23802.	1.5	14
71	Synthesis of Carbon Nanoparticles from Used Motor Oil and Benzene via Solution Plasma Process. Key Engineering Materials, 2017, 751, 773-778.	0.4	0
72	Simple introduction of carboxyl head group with alkyl spacer onto multiwalled carbon nanotubes by solution plasma process. Japanese Journal of Applied Physics, 2017, 56, 096202.	0.8	11

#	Article	IF	CITATIONS
73	Facile preparation of defective black TiO2 through the solution plasma process: Effect of parametric changes for plasma discharge on its structural and optical properties. Journal of Alloys and Compounds, 2017, 726, 567-577.	2.8	40
74	Enhanced ferromagnetism in graphite-like carbon layer-coated ZnO crystals. Journal of Alloys and Compounds, 2017, 695, 233-237.	2.8	6
75	Solution plasma synthesis of Pt/ZnO/KB for photo-assisted electro-oxidation of methanol. Journal of Alloys and Compounds, 2017, 692, 848-854.	2.8	30
76	New insights into vegetable oil pyrolysis by cold plasma technique. Energy Procedia, 2017, 138, 1153-1158.	1.8	12
77	The Control of Specific Surface Area of Nanocarbon Synthesized in Solution Plasma by Using the Structure of Reverse Micelle. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 153-157.	0.1	0
78	Influences of Plasma Formation Parameters on Size of Zinc Oxides Nanoparticles Synthesized by Solution Plasma. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 147-152.	0.1	0
79	Solution Plasma Reaction Field for Materials Synthesis . Journal of MMIJ, 2016, 132, 47-52.	0.4	4
80	Effect of electron acceptors H2O2 and O2 on the generated reactive oxygen species 1O2 and OH in TiO2-catalyzed photocatalytic oxidation of glycerol. Chinese Journal of Catalysis, 2016, 37, 1975-1981.	6.9	37
81	Fastest Formation Routes of Nanocarbons in Solution Plasma Processes. Scientific Reports, 2016, 6, 36880.	1.6	79
82	Adsorption of carbon dioxide by solution-plasma-synthesized heteroatom-doped carbon nanospheres. Japanese Journal of Applied Physics, 2016, 55, 01AE10.	0.8	9
83	Fe–N-doped carbon-based composite as an efficient and durable electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 114553-114559.	1.7	29
84	Effect of microstructure on corrosion resistance and heat resistance of flame-resistant Ca-added magnesium alloy AZ61. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 9-14.	0.1	1
85	In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conducted without additional reductants and agents. Scientific Reports, 2016, 6, 38652.	1.6	24
86	Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon, 2016, 98, 411-420.	5 . 4	76
87	Enhancement of conductivity in nano carbon balls by the addition of carbon tetrachloride via room temperature solution plasma process. RSC Advances, 2016, 6, 51864-51870.	1.7	15
88	Synthesis of SnO2nanoparticles using a solution plasma and their gas-sensing properties. Japanese Journal of Applied Physics, 2016, 55, 01AE17.	0.8	6
89	Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydrate Polymers, 2016, 148, 335-344.	5.1	108
90	Analysis of benzoquinone decomposition in solution plasma process. Journal of Instrumentation, 2016, 11, C01009-C01009.	0.5	2

#	Article	IF	CITATIONS
91	DFT calculation of oxygen adsorption on a core-single shell ZnNb catalyst. RSC Advances, 2016, 6, 98091-98095.	1.7	3
92	Differences in intermediate structures and electronic states associated with oxygen adsorption onto Pt, Cu, and Au clusters as oxygen reduction catalysts. Journal Physics D: Applied Physics, 2016, 49, 415305.	1.3	5
93	Heterocarbon nanosheets incorporating iron phthalocyanine for oxygen reduction reaction in both alkaline and acidic media. Physical Chemistry Chemical Physics, 2016, 18, 10856-10863.	1.3	30
94	Synthesis of colloidal MnO ₂ with a sheet-like structure by one-pot plasma discharge in permanganate aqueous solution. RSC Advances, 2016, 6, 2826-2834.	1.7	24
95	Synthesis of heteroatom-carbon nanosheets by solution plasma processing using N-methyl-2-pyrrolidone as precursor. RSC Advances, 2016, 6, 6990-6996.	1.7	27
96	A simple synthesis method for nanostructured Co-WC/carbon composites with enhanced oxygen reduction reaction activity. Science and Technology of Advanced Materials, 2016, 17, 37-44.	2.8	12
97	High Efficiency DNA Extraction by Graphite Oxide/Cellulose/Magnetite Composites Under Na+ Free System. Jom, 2016, 68, 1071-1077.	0.9	1
98	Nitrogen-Doped Carbon Nanoparticle–Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6962-6971.	4.0	158
99	Effect of treatment time in the Mg(OH)2/Mg–Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance. Surface and Coatings Technology, 2016, 286, 172-177.	2.2	87
100	Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine. Journal of Advanced Marine Engineering and Technology, 2016, 40, 929-934.	0.1	3
101	Synthesis of nitrogen-containing carbon by solution plasma in aniline with high-repetition frequency discharges. Japanese Journal of Applied Physics, 2016, 55, 01AE18.	0.8	22
102	Highly durable silica-coated Pt/carbon nanotubes for proton-exchange membrane fuel cells application. Japanese Journal of Applied Physics, 2016, 55, 01AE23.	0.8	3
103	Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil. Journal of Advanced Marine Engineering and Technology, 2016, 40, 894-898.	0.1	0
104	Degradation of synthetic dye in water by solution plasma process. Journal of Advanced Marine Engineering and Technology, 2016, 40, 888-893.	0.1	1
105	Cellulose Conversion to Sugar Alcohol by Solution Plasma Processing. Materials Research Society Symposia Proceedings, 2015, 1745, 22.	0.1	2
106	From Cyano-aromatic Molecules to Nitrogen-doped Carbons by Solution Plasma for the Oxygen Reduction Reaction in Alkaline Medium. Materials Today: Proceedings, 2015, 2, 4302-4308.	0.9	6
107	The Effect of Electrode Gap Distance on the Synthesis of Carbon Materials by Using Solution Plasma Process. Jom, 2015, 67, 2550-2556.	0.9	10
108	Innovative Graphite Oxide-Cellulose Based Material Specific for Genomic DNA Extraction. Jom, 2015, 67, 2557-2563.	0.9	1

#	Article	IF	CITATIONS
109	Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 9972-9981.	5.2	160
110	Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen reduction. Physical Chemistry Chemical Physics, 2015, 17, 6227-6232.	1.3	76
111	Accelerated nanoparticles synthesis in alcohol–water-mixture-based solution plasma. Physical Chemistry Chemical Physics, 2015, 17, 30255-30259.	1.3	25
112	Route of glycerol conversion and product generation via TiO2-induced photocatalytic oxidation in the presence of H2O2. Chemical Engineering Journal, 2015, 281, 252-264.	6.6	38
113	Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Physical Chemistry Chemical Physics, 2015, 17, 13794-13799.	1.3	89
114	Direct Deposition of Gold Nanoparticles on Cellulose Fiber by Solution Plasma Process. Materials Research Society Symposia Proceedings, 2015, 1723, 12.	0.1	1
115	Highly durable silica coated Pt/Cs with different surfactant types for proton exchange membrane fuel cell applications. RSC Advances, 2015, 5, 44258-44262.	1.7	4
116	Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma. Environmental Technology (United Kingdom), 2015, 36, 1672-1679.	1.2	7
117	Communicationâ€" In Situ Formation of Anticorrosive Mg(OH) ₂ /Carbon Composite Film on Magnesium Alloy by Ascorbic Acid-Assisted Hydrothermal Process. Journal of the Electrochemical Society, 2015, 162, C741-C743.	1.3	6
118	Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials. Physical Chemistry Chemical Physics, 2015, 17, 407-413.	1.3	141
119	Influences of solution plasma conditions on degradation rate and properties of chitosan. Innovative Food Science and Emerging Technologies, 2015, 32, 116-120.	2.7	39
120	Electrocatalytic oxygen reduction activity of boron-doped carbon nanoparticles synthesized via solution plasma process. Electrochemistry Communications, 2015, 59, 81-85.	2.3	56
121	Adsorption and desorption of DNA tuned by hydroxyl groups in graphite oxides-based solid extraction material. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1-6.	2.5	2
122	In situ solution plasma synthesis of mesoporous nanocarbon-supported bimetallic nanoparticles. RSC Advances, 2015, 5, 29131-29134.	1.7	13
123	Verification of Radicals Formation in Ethanol–Water Mixture Based Solution Plasma and Their Relation to the Rate of Reaction. Journal of Physical Chemistry A, 2015, 119, 11668-11673.	1.1	27
124	A new approach of nonpoint source pollution/stormwater sludge treatment by an integrated thermal plasma system. International Journal of Environmental Science and Technology, 2015, 12, 1769-1778.	1.8	6
125	One-step facile synthesis of carbon-supported PdAu nanoparticles and their electrochemical property and stability. Journal of Alloys and Compounds, 2015, 619, 452-457.	2.8	27
126	One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property. Progress in Natural Science: Materials International, 2014, 24, 593-598.	1.8	22

#	Article	IF	Citations
127	A Study on Electron Impact Dissociative Ionization of Organosilicon Precursors for Plasma Processing. Journal of Nanoscience and Nanotechnology, 2014, 14, 9653-9656.	0.9	1
128	Synthesis of mono-dispersed nanofluids using solution plasma. Journal of Applied Physics, 2014, 116, 024302.	1.1	27
129	Growth of Highly (100)â€Oriented <scp><scp>SrTiO</scp></scp> ₃ Thin Films on Si(111) Substrates Without Buffer Layer. Journal of the American Ceramic Society, 2014, 97, 1383-1385.	1.9	3
130	Influence of the discharge time of solution plasma process on the formation of gold nanoparticles in alginate matrix. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3099-3103.	2.7	10
131	Depolymerization of chitosan–metal complexes via a solution plasma technique. Carbohydrate Polymers, 2014, 102, 504-512.	5.1	34
132	A phonon thermodynamics approach of gold nanofluids synthesized in solution plasma. Applied Physics Letters, 2014, 104, 111902.	1.5	14
133	X-ray analysis of strain distribution in two-step grown epitaxial SrTiO3 thin films. Applied Physics Letters, 2014, 105, 051911.	1.5	2
134	The role of the central Fe atom in the N4-macrocyclic structure for the enhancement of oxygen reduction reaction in a heteroatom nitrogen–carbon nanosphere. Physical Chemistry Chemical Physics, 2014, 16, 14905.	1.3	54
135	Solution plasma exfoliation of graphene flakes from graphite electrodes. RSC Advances, 2014, 4, 51758-51765.	1.7	50
136	In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 18677-18686.	5.2	96
137	Effect of growth temperature on structural and morphological evolution of epitaxial SrTiO3 thin films grown on LaAlO3 (001) substrates by ion beam sputter deposition. Vacuum, 2014, 109, 175-179.	1.6	8
138	A novel one-step synthesis of gold nanoparticles in an alginate gel matrix by solution plasma sputtering. RSC Advances, 2014, 4, 1622-1629.	1.7	54
139	Plasma-Induced Synthesis of CuO Nanofibers and ZnO Nanoflowers in Water. Plasma Chemistry and Plasma Processing, 2014, 34, 1129-1139.	1.1	47
140	Hierarchical meso–macro structure porous carbon black as electrode materials in Li–air battery. Journal of Power Sources, 2014, 261, 156-161.	4.0	79
141	Controlled crystalline orientation of SrTiO3 thin films grown on $Pt(111)/Ti/\hat{l}\pm Al2O3(0001)$ substrates: Effect of growth temperature and Ti layer thickness. Applied Surface Science, 2014, 309, 95-105.	3.1	3
142	Solution plasma synthesis process of tungsten carbide on N-doped carbon nanocomposite with enhanced catalytic ORR activity and durability. RSC Advances, 2014, 4, 16813.	1.7	49
143	Solution Plasma Synthesis of Nitrogen-Doped Carbon Nanoballs as Effective Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Materials Research Society Symposia Proceedings, 2014, 1641, 1.	0.1	1
144	Synthesis of gold nanoparticles by solution plasma sputtering in various solvents. Journal of Physics: Conference Series, 2013, 417, 012030.	0.3	16

#	Article	IF	Citations
145	One-step synthesis of gold bimetallic nanoparticles with various metal-compositions. Journal of Alloys and Compounds, 2013, 562, 74-83.	2.8	37
146	Nanomechanical Properties of Amorphous and Polycrystalline SrTiO3 Transparent Thin Films Prepared by Ion Beam Sputtering. Journal of Materials Engineering and Performance, 2013, 22, 863-868.	1.2	4
147	Degradation of \hat{l}^2 -chitosan by solution plasma process (SPP). Polymer Degradation and Stability, 2013, 98, 2089-2093.	2.7	53
148	Fabrication and characterization of epitaxial SrTiO3/Nb-doped SrTiO3 superlattices by double ECR ion beam sputter deposition. Vacuum, 2013, 89, 35-39.	1.6	4
149	Growth of highly (110)- and (111)-textured SrTiO3 thin films on $Pt(111)$ (1±-Al2O3(0001) substrates by ECR ion beam sputter deposition. Solid State Communications, 2013, 158, 65-69.	0.9	6
150	Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6. Japanese Journal of Applied Physics, 2013, 52, 125101.	0.8	35
151	Facile fabrication of PtAu alloy clusters using solution plasma sputtering and their electrocatalytic activity. Journal of Alloys and Compounds, 2013, 552, 351-355.	2.8	60
152	Effect of polymer concentration on the depolymerization of sodium alginate by the solution plasma process. Polymer Degradation and Stability, 2013, 98, 1072-1080.	2.7	43
153	The Role of Activated Nitrogen Species on Double-folded Screen Nitriding Process. Journal of Physics: Conference Series, 2013, 417, 012023.	0.3	7
154	Synthesis of structure-controlled carbon nano spheres by solution plasma process. Carbon, 2013, 60, 292-298.	5 . 4	128
155	Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics. Nanotechnology, 2013, 24, 055604.	1.3	54
156	A simple synthesis method for nano-metal catalyst supported on mesoporous carbon: the solution plasma process. Nanoscale, 2013, 5, 6874.	2.8	74
157	Charge Doping of Large-Area Graphene by Gold-Alloy Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26804-26810.	1.5	24
158	Highly efficient treatment of industrial wastewater by solution plasma with low environmental load. Water Science and Technology, 2013, 68, 923-928.	1.2	3
159	In situ Preparation of Gold Nanoparticles in Alginate Gel Matrix by Solution Plasma Sputtering Process. Materials Research Society Symposia Proceedings, 2013, 1569, 151-155.	0.1	1
160	Simple Synthesis of Platinum Nanoparticles by Plasma Sputtering in Water. Japanese Journal of Applied Physics, 2013, 52, 01AN05.	0.8	26
161	Crosslinking of a Gelatin Solutions Induced by Pulsed Electrical Discharges in Solutions. Plasma Processes and Polymers, 2013, 10, 792-797.	1.6	29
162	Epitaxial growth of (111)-oriented BaTiO ₃ /SrTiO ₃ perovskite superlattices on Pt(111)/Ti/Al ₂ O ₃ (0001) substrates. Applied Physics Letters, 2013, 103, 112902.	1.5	15

#	Article	lF	Citations
163	Gold Nanoparticle Synthesis Using Three-Dimensionally Integrated Micro-Solution Plasmas. Japanese Journal of Applied Physics, 2013, 52, 126202.	0.8	20
164	Chemical Bonding State and Morphology of Silica Materials by Solution Plasma. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2013, 64, 180-184.	0.1	0
165	Optical and mechanical properties of transparent SrTiO ₃ thin films deposited by ECR ion beam sputter deposition. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 311-319.	0.8	17
166	Generation of Three-Dimensionally Integrated Micro Solution Plasmas and Its Application to Decomposition of Organic Contaminants in Water. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 507-511.	0.1	15
167	Gold Nanoparticles Supported on SrTiO ₃ by Solution Plasma Sputter Deposition for Enhancing UV- and Visible-light Photocatalytic Efficiency. Materials Research Society Symposia Proceedings, 2013, 1509, 1.	0.1	6
168	Orientation control of textured SrTiO ₃ thin films on platinized α-Al ₂ O ₃ (0 0 0 1) by an ion beam sputter deposition method. Journal PhyApplied Physics, 2012, 45, 494003.	/s ic3 D:	5
169	Preparation and wettability examinations of transparent SiO ₂ binder-added MgF ₂ nanoparticle coatings covered with fluoro-alkyl silane self-assembled monolayer. Applied Optics, 2012, 51, 2298.	0.9	3
170	High-Rate Reactive Deposition of SiO2 Films Using a New DC Rotary Sputtering Cathode. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 179.	0.1	3
171	Rapid Synthesis and Structural Characterization of Well-Defined Gold Clusters by <i>Solution Plasma Sputtering</i> Crystal Growth and Design, 2012, 12, 119-123.	1.4	50
172	Rapid Sterilization of Escherichia coli by Solution Plasma Process. Japanese Journal of Applied Physics, 2012, 51, 126201.	0.8	7
173	Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma. Materials Research Bulletin, 2012, 47, 2726-2729.	2.7	17
174	Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology, 2012, 23, 395602.	1.3	41
175	Effects of Substrate Temperature on Properties of Tin-Doped Indium Oxide Films Deposited by Activated Electron Beam Evaporation. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 173.	0.1	O
176	Study on the Combustion Inhibition of Poly Phenylene Ether Alloy. Kobunshi Ronbunshu, 2012, 69, 297-299.	0.2	0
177	Growth and characterization of highly ⟨i⟩c⟨/i⟩â€axis textured SrTiO⟨sub⟩3⟨/sub⟩ thin films directly grown on Si(001) substrates by ion beam sputter deposition. Crystal Research and Technology, 2012, 47, 187-194.	0.6	9
178	Active Species Generated by a Pulsed Arc Electrohydraulic Discharge Plasma Channel in Contaminated Water Treatments. Plasma Chemistry and Plasma Processing, 2012, 32, 343-358.	1.1	23
179	Enhanced memory window of Au/BaTiO3/SrTiO3/Si(001) MFIS structure with high c-axis orientation for non-volatile memory applications. Applied Physics A: Materials Science and Processing, 2012, 108, 337-342.	1.1	25
180	Preparation of low molecular weight chitosan using solution plasma system. Carbohydrate Polymers, 2012, 87, 2745-2749.	5.1	66

#	Article	IF	CITATIONS
181	High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance. Sensors and Actuators B: Chemical, 2012, 164, 15-21.	4.0	41
182	Rapid Sterilization of Escherichia coliby Solution Plasma Process. Japanese Journal of Applied Physics, 2012, 51, 126201.	0.8	7
183	15th International Conference on Thin Films (ICTF-15). Journal of the Vacuum Society of Japan, 2012, 55, 464-468.	0.3	0
184	Synthesis of gold nanoparticles on petal-shaped silica by solution plasma. , 2011, , .		0
185	Fabrication of Vertically Aligned Diamond Whiskers from Highly Boron-Doped Diamond by Oxygen Plasma Etching. ACS Applied Materials & Interfaces, 2011, 3, 177-182.	4.0	47
186	Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma. Journal of Physical Chemistry C, 2011, 115, 24569-24576.	1.5	156
187	Microstructural characterization of gold nanoparticles synthesized by solution plasma processing. Nanotechnology, 2011, 22, 455701.	1.3	50
188	Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control. Plasma Sources Science and Technology, 2011, 20, 034017.	1.3	10
189	Low-Temperature Fabrication of Bunch-Shaped ZnO Nanowires Using a Sodium Hydroxide Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2011, 11, 10935-10939.	0.9	7
190	Wettability of MgF2 porous nanoparticle layers covered with fluoroalkylsilane self-assembled monolayer. Journal of the Ceramic Society of Japan, 2011, 119, 591-594.	0.5	2
191	Ag nanoparticle incorporation in mesoporous silica synthesized by solution plasma and their catalysis for oleic acid hydrogenation. Materials Letters, 2011, 65, 1037-1040.	1.3	42
192	Effect of the electrode work function on the water plasma breakdown voltage. Current Applied Physics, 2011, 11, S154-S158.	1.1	17
193	Redox reactions in liquid plasma during iron oxide and oxide-hydroxide nanoparticles synthesis. Current Applied Physics, 2011, 11, S30-S34.	1.1	20
194	Wettability characterization of transparent MgF2 nanoparticle coatings with SiO2 binder covered with fluoroalkylsilane self-assembled monolayers. Journal of Sol-Gel Science and Technology, 2011, 60, 125-130.	1.1	4
195	Solution plasma for template removal in mesoporous silica: pH and discharge time varying characteristics. Thin Solid Films, 2011, 519, 7030-7035.	0.8	28
196	Adhesion property of SiOx-doped Diamond-like Carbon Films Deposited on Polycarbonate by Inductively Coupled Plasma Chemical Vapor Deposition. Thin Solid Films, 2011, 519, 6678-6682.	0.8	14
197	Optical diagnostic of bipolar electrical discharges in HCl, KCl, and KOH solutions. Journal of Applied Physics, 2011, 109, 123301.	1.1	18
198	Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	14

#	Article	IF	Citations
199	Fabrication of Transparent Protective Diamond-Like Carbon Films on Polymer. Japanese Journal of Applied Physics, 2011, 50, 08JD08.	0.8	5
200	Creating Biointerface on Polymer by Plasma-Initiated Graft Polymerization. Transactions of the Materials Research Society of Japan, 2011, 36, 549-552.	0.2	2
201	Fabrication of Transparent Protective Diamond-Like Carbon Films on Polymer. Japanese Journal of Applied Physics, 2011, 50, 08JD08.	0.8	3
202	OH Production Enhancement in Bubbling Pulsed Discharges. , 2010, , .		0
203	Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta, 2010, 55, 7094-7101.	2.6	269
204	Time-resolved Optical Emission Spectroscopy in Water Electrical Discharges. Plasma Chemistry and Plasma Processing, 2010, 30, 619-631.	1.1	38
205	Attenuated total reflectance spectroscopy of coumarin organosilane molecules adsorbed on a fused silica surface. Applied Surface Science, 2010, 257, 1792-1799.	3.1	6
206	Solution Plasma Process for Template Removal in Mesoporous Silica Synthesis. Japanese Journal of Applied Physics, 2010, 49, 126202.	0.8	19
207	A novel 3-dimensional cell culture system for embryoid bodies' formation. , 2010, , .		0
208	FTIR study of methylene blue plasma degradation products through plasma treatment on water. , 2010, , .		8
209	Oxygen Gas Barrier Properties of Hydrogenated Amorphous Carbon Thin Films Deposited with a Pulse-Biased Inductively Coupled Plasma Chemical Vapor Deposition Method. Japanese Journal of Applied Physics, 2010, 49, 08JF10.	0.8	5
210	Effect of increasing hardness on Si-containing diamond-like carbon film during tribo-test. Diamond and Related Materials, 2010, 19, 1017-1020.	1.8	10
211	Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 2010, 26, 8147-8154.	1.6	247
212	Fabrication of microtemplates for the control of bacterial immobilization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1183-1187.	0.9	12
213	Surfactant-Assisted Fabrication of Tin Oxide Nanowires Through One-Step Electrochemically Induced Chemical Deposition. Journal of the Electrochemical Society, 2009, 156, D413.	1.3	5
214	Biomimetic materials processing. Proceedings of SPIE, 2009, , .	0.8	3
215	Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films, 2009, 518, 912-917.	0.8	169
216	Needle electrode erosion in water plasma discharge. Thin Solid Films, 2009, 518, 918-923.	0.8	67

#	Article	IF	Citations
217	Self-assembly of human plasma fibrinogens on binary organosilane monolayers with micro domains. Applied Surface Science, 2009, 255, 7912-7917.	3.1	3
218	Highly reproducible technique for three-dimensional nanostructure fabrication via anodization scanning probe lithography. Applied Surface Science, 2009, 255, 7302-7306.	3.1	3
219	Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 826-830.	0.9	18
220	Surface Modification of Gold Nanorods by Organosilanes. Composite Interfaces, 2009, 16, 377-385.	1.3	8
221	Solution Plasma Surface Modification for Nanocarbon-Composite Materials. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 938-942.	0.2	16
222	Development of Biomimetic Materials Processing. Materia Japan, 2009, 48, 174-178.	0.1	0
223	Surface characterization on binary nano/micro-domain composed of alkyl- and amino-terminated self-assembled monolayer. Applied Surface Science, 2008, 254, 7453-7458.	3.1	8
224	Control of site-selective adsorption reaction on a biomimetic super-hydrophilic/super-hydrophobic micropatterned template. Surface and Coatings Technology, 2008, 202, 5535-5538.	2.2	8
225	Attenuated total reflectance spectroscopy of simultaneous processes: Corrosion inhibition of cuprous oxide by benzotriazole. Applied Surface Science, 2008, 254, 2960-2966.	3.1	9
226	Influence of Ar gas flow rate in organosilicon plasma for the fabrication of SiO:CH thin films by PECVD method. Surface and Coatings Technology, 2008, 202, 5259-5261.	2.2	5
227	Size-regulated gold nanoparticles fabricated by a discharge in reverse micelle solutions. Surface and Coatings Technology, 2008, 202, 5343-5346.	2.2	48
228	Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films. Surface Science, 2008, 602, 1011-1019.	0.8	3
229	Bipolar pulsed electrical discharge for decomposition of organic compounds in water. Journal of Electrostatics, 2008, 66, 294-299.	1.0	76
230	Special type of plasma dielectric barrier discharge reactor for direct ozonization of water and degradation of organic pollution. Journal Physics D: Applied Physics, 2008, 41, 085207.	1.3	53
231	Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 854-856.	0.9	132
232	â€~Fabrication and Structure of Alginate Gel Incorporating Gold Nanorods. Journal of Physical Chemistry C, 2008, 112, 416-422.	1.5	18
233	Bipolar Pulsed Electrical Discharges in Liquid. IEEE Transactions on Plasma Science, 2008, 36, 1156-1157.	0.6	11
234	Effect of Reaction Temperature on Growth of Organosilane Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2008, 47, 6442-6447.	0.8	8

#	Article	IF	CITATIONS
235	Comparative study of the molecular aggregation state of alkyl organic monolayers prepared on Si and hydrogen-terminated Si substrates. Nanotechnology, 2008, 19, 055601.	1.3	4
236	Morphology of High-Frequency Electrohydraulic Discharge for Liquid-Solution Plasmas. IEEE Transactions on Plasma Science, 2008, 36, 1158-1159.	0.6	23
237	Study of Protein Adsorption onto a Polymer Film by in-situ UV Attenuated Total Reflectance Spectroscopy. Materials Research Society Symposia Proceedings, 2008, 1138, 1.	0.1	0
238	Effects of Humidity and Solution Age on Growth of Organosilane Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2008, 47, 6416-6421.	0.8	8
239	Counterion Immobilization in a Strong Polyelectrolyte Brush by Zeta Potential Measurements. Transactions of the Materials Research Society of Japan, 2008, 33, 323-326.	0.2	0
240	The Importance of Precursor Molecules Symmetry in the Formation of Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2007, 46, 1118-1123.	0.8	9
241	Radio Frequency Power Dependence in Formation of SiO:CH Thin Films by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2007, 46, 7460.	0.8	0
242	Reaction Dynamics for Gold Nanoparticles Synthesis in Solution Plasma. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	1
243	Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films. Solid State Phenomena, 2007, 124-126, 347-350.	0.3	4
244	Fabrication of Ultra Water-Repellent Thin Films by PECVD Method and Observation of Deposition Process. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2007, 58, 307-310.	0.1	5
245	Fabrication and characterization of ultra-water-repellent alumina–silica composite films. Journal Physics D: Applied Physics, 2007, 40, 192-197.	1.3	34
246	Fabrication and Self-Assembly of Hydrophobic Gold Nanorods. Journal of Physical Chemistry B, 2007, 111, 8891-8898.	1.2	82
247	A Micropatterned Multifunctional Carbohydrate Display by an Orthogonal Self-Assembling Strategy. Biomacromolecules, 2007, 8, 753-756.	2.6	25
248	Title is missing!. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2007, 58, 810-814.	0.1	11
249	A micropatterned carbohydrate display for tissue engineering by self-assembly of heparin. Surface Science, 2007, 601, 3871-3875.	0.8	6
250	Localized surface plasmon resonance of silicon compounds adsorbed on silver nanoparticles. Surface Science, 2007, 601, 3886-3891.	0.8	5
251	Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy. Surface Science, 2007, 601, 3861-3865.	0.8	12
252	SPM analysis of fibrinogen adsorption on solid surfaces. Surface Science, 2007, 601, 3948-3951.	0.8	12

#	Article	IF	CITATIONS
253	Atmospheric plasma-calcination of mesoporous tungsten oxide utilizing plasma dielectric barrier discharge. Thin Solid Films, 2007, 515, 4905-4908.	0.8	5
254	Submicron optical near-field diffraction patterns obtained by irradiation of octadecyltrimethoxysilane self-assembled monolayers with light at 157Ânm. Thin Solid Films, 2007, 515, 5147-5152.	0.8	6
255	Local generation of carboxyl groups on an organic monolayer through chemical conversion using scanning probe anodization. Materials Science and Engineering C, 2007, 27, 1241-1246.	3.8	3
256	Application of Ultra-Water-Repellent Surface to Cell Culture. Journal of Bioscience and Bioengineering, 2007, 104, 420-423.	1.1	15
257	Electrochemical soft lithography of an 1,7-octadiene monolayer covalently linked to hydrogen-terminated silicon using scanning probe microscopy. Surface Science, 2007, 601, 4206-4211.	0.8	10
258	Patterned hydrophobic–hydrophilic templates made from microwave-plasma enhanced chemical vapor deposited thin films. Thin Solid Films, 2007, 515, 4203-4208.	0.8	33
259	Degradation of Bacteria Using Pulse Plasma Discharge in Liquid Medium. International Power Modulator Symposium and High-Voltage Workshop, 2006, , .	0.0	5
260	Depth profiles of the Fermi level at an amorphous-carbon nitride/SiO2/n-type-Si heterojunction interface obtained by Kelvin probe force microscopy. Diamond and Related Materials, 2006, 15, 1378-1382.	1.8	2
261	Study of Alkyl Organic Monolayers with Different Molecular Chain Lengths Directly Attached to Silicon. Langmuir, 2006, 22, 9962-9966.	1.6	32
262	Visualization of human plasma fibrinogen adsorbed on highly oriented pyrolytic graphite by scanning probe microscopy. Surface Science, 2006, 600, 1674-1678.	0.8	26
263	Synthesis of DLC films by PECVD combined with hollow cathode sputtering. Vacuum, 2006, 80, 736-739.	1.6	6
264	Synthesis of nitrogen-rich carbon nitride thin films via magnetic field-assisted inductively coupled plasma sputtering. Vacuum, 2006, 80, 752-755.	1.6	2
265	Magnetron plasma-enhanced chemical vapor deposition of diamond-like carbon thin films. Thin Solid Films, 2006, 506-507, 63-67.	0.8	7
266	Role of carbon atoms in plasma-enhanced chemical vapor deposition for carbon nanotubes synthesis. Thin Solid Films, 2006, 515, 1314-1319.	0.8	5
267	Water droplets interaction with super-hydrophobic surfaces. Surface Science, 2006, 600, 3710-3714.	0.8	31
268	Microarc plasma treatment of titanium and aluminum surfaces in electrolytes. Thin Solid Films, 2006, 506-507, 364-368.	0.8	11
269	Treatment of Immobilized Collagen on Poly(tetrafluoroethylene) Nanoporous Membrane with Plasma. Japanese Journal of Applied Physics, 2006, 45, 8352-8357.	0.8	3
270	Fabrication of Ferroelectric Self-assembled Fluorinated Polyether Monolayer on Hydrogen-terminated Si(111) Surface. Chemistry Letters, 2005, 34, 600-601.	0.7	1

#	Article	IF	CITATIONS
271	An investigation into the effect of ionic species on the formation of ZnTe from a citric acid electrolyte. Electrochimica Acta, 2005, 50, 3509-3516.	2.6	25
272	Properties of DLC thin films produced by RF PEâ^'CVD from pyrrole monomer. Surface and Coatings Technology, 2005, 200, 1106-1109.	2.2	17
273	Photolithographic Patterning of Dendrimer Monolayers and Pattern-Selective Adsorption of Linear Macromolecules. Journal of Nanoscience and Nanotechnology, 2005, 5, 1792-1800.	0.9	14
274	Surface-Potential Reversibility of an Amino-Terminated Self-Assembled Monolayer Based on Nanoprobe Chemistry. Journal of Physical Chemistry B, 2005, 109, 11602-11605.	1.2	20
275	High-Resolution Submicron Patterning of Self-Assembled Monolayers Using a Molecular Fluorine Laser at 157 nm. Langmuir, 2005, 21, 1398-1402.	1.6	5
276	自己çμ"ç1"åŒ–ææ–™ã®å‰μ製ã•応用ï½z自然ã«å¦ã¶ã"ã®ã¥ãã,Šï½zž. Hyomen Gijutsu/Journal of the	Surfaice F	inis b ing Socie
277	Reversible nanochemical conversion. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, L44.	1.6	14
278	Organosilane self-assembled monolayers directly linked to the diamond surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2005-2009.	0.9	25
279	Exploration of the chemical bonding forms of alkoxy-type organic monolayers directly attached to silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1425-1427.	0.9	6
280	Contribution of Primary Chemical Bonding States of Amorphous Carbon Nitride to Hardness. Electrochemical and Solid-State Letters, 2004, 7, C84.	2.2	1
281	Fabrication of a Built-In Patterned Metal Microstructure on a Polymer Substrate Using a Microstructured Organic Monolayer Template. Electrochemical and Solid-State Letters, 2004, 7, C140.	2.2	4
282	UV Raman spectroscopic probing into nitrogen-doped hydrogenated amorphous carbon. Thin Solid Films, 2004, 457, 128-132.	0.8	7
283	Electrodeposition of CuInTe2 film from an acidic solution. Surface and Coatings Technology, 2004, 182, 156-160.	2.2	22
284	Generation of Amino-Terminated Surfaces by Chemical Lithography Using Atomic Force Microscopy. Langmuir, 2004, 20, 5182-5184.	1.6	19
285	Effect of N doping on properties of diamond-like carbon thin films produced by RF capacitively coupled chemical vapor deposition from different precursors. Diamond and Related Materials, 2004, 13, 1993-1996.	1.8	12
286	Surface potential microscopy for chemistry of organic self-assembled monolayers in small domains. Nanotechnology, 2004, 15, S69-S75.	1.3	27
287	Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride. Surface Science, 2003, 532-535, 970-975.	0.8	21
288	Selective immobilization of functional organic molecules onto a microtemplate fabricated using an amino-terminated self-assembled monolayer. Surface Science, 2003, 532-535, 1072-1078.	0.8	9

#	Article	IF	CITATIONS
289	Imaging micropatterned organosilane self-assembled monolayers on silicon by means of scanning electron microscopy and Kelvin probe force microscopy. Surface and Interface Analysis, 2003, 35, 94-98.	0.8	14
290	Origin of N 1s spectrum in amorphous carbon nitride obtained by X-ray photoelectron spectroscopy. Thin Solid Films, 2003, 434, 296-302.	0.8	37
291	Micropatterned 1-Alkene Self-Assembled Monolayer on Hydrogen-Terminated Silicon by Vacuum Ultraviolet Lithography. Japanese Journal of Applied Physics, 2003, 42, 2534-2537.	0.8	22
292	Microstructured π-Conjugated Organic Monolayer Covalently Attached to Silicon. Langmuir, 2003, 19, 10632-10634.	1.6	30
293	Principle in Imaging Contrast in Scanning Electron Microscopy for Binary Microstructures Composed of Organosilane Self-Assembled Monolayers. Journal of Physical Chemistry B, 2003, 107, 664-667.	1.2	46
294	Scanning Probe Surface Modification: Chemical Conversion of Terminal Functional Groups on Organosilane Self-Assembled Monolayers. AIP Conference Proceedings, 2003, , .	0.3	2
295	生体å^†å困定åŒ−ã«å⁵ãŸæœ‰æ©Ÿåãå^†å膜ã®ä½œè£½ããå¾®ç°æ§‹é€åŒ−. Materia Japan, 2003, 42,	6 48 -654.	0
296	Alkyl Self-assembled Monolayer Prepared on Hydrogen-terminated Si(111) through Reduced Pressure Chemical Vapor Deposition: Chemical Resistivities in HF and NH4F Solutions. Chemistry Letters, 2002, 31, 1194-1195.	0.7	10
297	Title is missing!. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2002, 53, 951-952.	0.1	0
298	The decomposition mechanism of p-chloromethylphenyltrimethoxysiloxane self-assembled monolayers on vacuum ultraviolet irradiation. Journal of Materials Chemistry, 2002, 12, 2684-2687.	6.7	24
299	Regulation of the Surface Potential of Silicon Substrates in Micrometer Scale with Organosilane Self-Assembled Monolayers. Langmuir, 2002, 18, 7469-7472.	1.6	64
300	Surface potential microscopy for organized molecular systems. Applied Surface Science, 2002, 188, 403-410.	3.1	75
301	Surface potential contrasts between silicon surfaces covered and uncovered with an organosilane self-assembled monolayer. Ultramicroscopy, 2002, 91, 151-156.	0.8	41
302	Surface potential images of self-assembled monolayers patterned by organosilanes:ab initio molecular orbital calculations. Surface and Interface Analysis, 2002, 34, 601-605.	0.8	35
303	Surface potentials of patterned organosilane self-assembled monolayers acquired by Kelvin probe force microscopy and ab initio molecular calculation. Chemical Physics Letters, 2001, 349, 172-177.	1.2	31
304	Catalytic effects of copper on dibenzoâ€pâ€dioxin and polychlorinated dibenzoâ€pâ€dioxin generations usingab initiomolecular orbital method. Toxicological and Environmental Chemistry, 2001, 81, 133-146.	0.6	4
305	Kelvin Probe Force Microscopy Images of Microstructured Organosilane Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2001, 40, 4373-4377.	0.8	44
306	Surface Potential Images of Microstructured Organosilane Self-Assembled Monolayers Acquired by Kelvin Probe Force Microscopy. Japanese Journal of Applied Physics, 2001, 40, L174-L176.	0.8	15

#	Article	IF	CITATIONS
307	Kinetics of SiHCl ₃ and SiCl ₄ Evolution in Si(s)–HCl(g) System Simulated by Ab-initio MO. Materials Transactions, JIM, 2000, 41, 383-392.	0.9	2
308	Gas phase equilibria for dibenzoâ€pâ€dioxin, dibenzoâ€pâ€furan and biphenyl in the Câ€Hâ€O system. Toxicolog and Environmental Chemistry, 2000, 74, 165-177.	ical 0.6	4
309	Prediction for thermodynamic function of dioxins for gas phase using semi-empirical molecular orbital method with PM3 Hamiltonian. Chemosphere, 2000, 40, 131-145.	4.2	38
310	Thermodynamic investigation of the effect of oxygen and hydrogen chloride potential upon generation and decomposition behavior of dioxins. Toxicological and Environmental Chemistry, 2000, 75, 161-179.	0.6	3
311	Prediction of Elementary Reaction Mechanism for the CVD Process in Si ₂ Cl ₆ +H ₂ System using Semi-Empirical Molecular Orbital Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 319-325.	0.2	O
312	Theoretical Analysis for Thermal Chemical Vapor Deposition from Tetraethoxysilane Using a Semi-Empirical Molecular Orbital Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 931-937.	0.2	0
313	The Effect of Citric Acid and EDTA Addition on Cu–In Alloy Electrochemical Deposition. Materials Transactions, JIM, 1999, 40, 867-870.	0.9	3
314	Prediction of Pressure Dependent Rate Constant for the Reaction, SiH ₄ (g)→SiH ₃ (g)+H(g), Using RRKM Theory Aided by Ab-Initio MO. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 520-526.	0.2	2
315	Structural Properties and Microstructures of SrTiO _{1-x} Nb _x O ₃ Ub>30 ₃ 0 ₃ 0 ₃ 0 ₃ 0 _{0₀}}	gt o. 3	0
316	Hydrophilicity and Bioactivity of a Polyethylene Terephthalate Surface Modified by Plasma-Initiated Graft Polymerization., 0,, 207-219.		0