Yosuke Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180031/publications.pdf Version: 2024-02-01

YOSHKE TANAKA

#	Article	IF	CITATIONS
1	Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein. Cell, 1998, 95, 829-837.	13.5	1,489
2	Kinesin superfamily motor proteins and intracellular transport. Nature Reviews Molecular Cell Biology, 2009, 10, 682-696.	16.1	1,457
3	Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease. Neuron, 2010, 68, 610-638.	3.8	940
4	Charcot-Marie-Tooth Disease Type 2A Caused by Mutation in a Microtubule Motor KIF1Bβ. Cell, 2001, 105, 587-597.	13.5	725
5	Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria. Cell, 1998, 93, 1147-1158.	13.5	590
6	Nodal Flow and the Generation of Left-Right Asymmetry. Cell, 2006, 125, 33-45.	13.5	497
7	FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature, 2005, 435, 172-177.	13.7	483
8	Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature, 2002, 417, 83-87.	13.7	464
9	Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination. Cell, 2005, 121, 633-644.	13.5	424
10	Left-Right Asymmetry and Kinesin Superfamily Protein KIF3A: New Insights in Determination of Laterality and Mesoderm Induction by kif3Aâ^'/â~' Mice Analysis. Journal of Cell Biology, 1999, 145, 825-836.	2.3	419
11	Abnormal Nodal Flow Precedes Situs Inversus in iv and inv mice. Molecular Cell, 1999, 4, 459-468.	4.5	402
12	Golgi Vesiculation and Lysosome Dispersion in Cells Lacking Cytoplasmic Dynein. Journal of Cell Biology, 1998, 141, 51-59.	2.3	330
13	Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Reports, 2019, 29, 1261-1273.e6.	2.9	302
14	KIF5C, a Novel Neuronal Kinesin Enriched in Motor Neurons. Journal of Neuroscience, 2000, 20, 6374-6384.	1.7	275
15	Kinesin Superfamily Protein 2A (KIF2A) Functions in Suppression of Collateral Branch Extension. Cell, 2003, 114, 229-239.	13.5	261
16	KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biology, 2008, 10, 1269-1279.	4.6	185
17	Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Experimental Cell Research, 2015, 334, 16-25.	1.2	185
18	The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biology, 2005, 7, 474-482.	4.6	156

Yosuke Tanaka

#	Article	IF	CITATIONS
19	Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9654-9659.	3.3	151
20	KIF16B/Rab14 Molecular Motor Complex Is Critical for Early Embryonic Development by Transporting FGF Receptor. Developmental Cell, 2011, 20, 60-71.	3.1	94
21	Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nature Communications, 2018, 9, 2733.	5.8	88
22	Left-Right Determination: Involvement of Molecular Motor KIF3, Cilia, and Nodal Flow. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000802-a000802.	2.3	81
23	Role of KIFC3 motor protein in Golgi positioning and integration. Journal of Cell Biology, 2002, 158, 293-303.	2.3	77
24	The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function. Neuron, 2016, 90, 1215-1229.	3.8	67
25	The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7928-7932.	3.3	62
26	Cilia, KIF3 molecular motor and nodal flow. Current Opinion in Cell Biology, 2012, 24, 31-39.	2.6	59
27	Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Research, 1992, 596, 269-278.	1.1	54
28	Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nature Communications, 2021, 12, 1826.	5.8	54
29	Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Molecular Medicine, 2019, 11, e10695.	3.3	47
30	Kinesin <i>Kif3b</i> mutation reduces <scp>NMDAR</scp> subunit <scp>NR</scp> 2A trafficking and causes schizophreniaâ€like phenotypes in mice. EMBO Journal, 2020, 39, e101090.	3.5	41
31	The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation. Cell Reports, 2018, 23, 3864-3877.	2.9	40
32	Fluid Dynamic Mechanism Responsible for Breaking the Left-Right Symmetry of the Human Body: The Nodal Flow. Annual Review of Fluid Mechanics, 2009, 41, 53-72.	10.8	38
33	Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nature Communications, 2019, 10, 4869.	5.8	36
34	Molecular Motor KIF1C Is Not Essential for Mouse Survival and Motor-Dependent Retrograde Golgi Apparatus-to-Endoplasmic Reticulum Transport. Molecular and Cellular Biology, 2002, 22, 866-873.	1.1	31
35	Mouse models of Charcot-Marie-Tooth disease. Trends in Genetics, 2002, 18, S39-S44.	2.9	28
36	Antioxidant Signaling Involving the Microtubule Motor KIF12 Is an Intracellular Target of Nutrition Excess in Beta Cells. Developmental Cell, 2014, 31, 202-214.	3.1	27

ΥΟSUKE ΤΑΝΑΚΑ

#	Article	IF	CITATIONS
37	Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Reports, 2019, 29, 4144-4158.e7.	2.9	27
38	KIF1Bβ mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. Journal of Cell Biology, 2018, 217, 3480-3496.	2.3	23
39	The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1–RUNX1T1. Journal of Biological Chemistry, 2017, 292, 12528-12541.	1.6	20
40	Transcriptional activities of DUX4 fusions in B-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, e522-e526.	1.7	17
41	CHIPâ€associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Science, 2022, 113, 1182-1194.	1.7	17
42	The Atypical Kinesin KIF26A Facilitates Termination of Nociceptive Responses by Sequestering Focal Adhesion Kinase. Cell Reports, 2018, 24, 2894-2907.	2.9	15
43	A histone modifier, ASXL1, interacts with NONO and is involved in paraspeckle formation in hematopoietic cells. Cell Reports, 2021, 36, 109576.	2.9	15
44	Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Reports, 2021, 35, 108971.	2.9	14
45	Improving the quality of a recombinant rabbit monoclonal antibody against PLXDC2 by optimizing transient expression conditions and purification method. Protein Expression and Purification, 2018, 146, 27-33.	0.6	12
46	Eliminating chronic myeloid leukemia stem cells by IRAK1/4 inhibitors. Nature Communications, 2022, 13, 271.	5.8	12
47	HHEX promotes myeloid transformation in cooperation with mutant ASXL1. Blood, 2020, 136, 1670-1684.	0.6	11
48	A neuropathyâ€associated kinesin KIF1A mutation hyperâ€stabilizes the motorâ€neck interaction during the ATPase cycle. EMBO Journal, 2022, 41, e108899.	3.5	11
49	Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms. Scientific Reports, 2019, 9, 8171.	1.6	10
50	MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Reports, 2022, 39, 110805.	2.9	10
51	Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD). Journal of Biochemistry, 2016, 159, 17-25.	0.9	4
52	Exclusion of Kif1c as a candidate gene for anthrax toxin susceptibility. Microbial Pathogenesis, 2010, 48, 188-190.	1.3	3
53	Efficacy of tyrosine kinase inhibitors on a mouse chronic myeloid leukemia model and chronic myeloid leukemia stem cells. Experimental Hematology, 2020, 90, 46-51.e2.	0.2	3

54 Cytoskeleton | Microtubule-Associated Proteins. , 2021, , 240-246.

Yosuke Tanaka

#	Article	IF	CITATIONS
55	Further Reading Kinesin Superfamily Proteins. , 2021, , 535-546.		0
56	A p53-MDM2 Interaction Inhibitor, DS-5272, Inhibits the Development of MLL-Fusion Leukemia with the Assistance of Tumor Immunity. Blood, 2017, 130, 796-796.	0.6	0
57	Mutant ASXL1 Disrupts Paraspeckle Formation through Aberrant Interaction with Nono in Hematopoietic Cells. Blood, 2019, 134, 2514-2514.	0.6	0
58	Impaired Osteoblastic Differentiation of MSCs Suppresses Normal Hematopoiesis in MDS. Blood, 2020, 136, 17-18.	0.6	0
59	CRISPR/Cas9-mediated base-editing enables a chain reaction through sequential repair of sgRNA scaffold mutations. Scientific Reports, 2021, 11, 23889.	1.6	0