Xiaowei Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1800061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	4.0	775
2	Selfâ€Assembly Core–Shell Grapheneâ€Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Advanced Functional Materials, 2018, 28, 1803938.	7.8	561
3	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	11.1	560
4	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.	5.4	525
5	Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2014, 2, 16403-16409.	5.2	514
6	Electromagnetic properties of Si–C–N based ceramics and composites. International Materials Reviews, 2014, 59, 326-355.	9.4	499
7	Lightweight Ti ₂ CT <i>_x</i> MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Applied Materials & Interfaces, 2019, 11, 10198-10207.	4.0	488
8	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 6332-6341.	4.0	428
9	Direct Growth of Edgeâ€Rich Graphene with Tunable Dielectric Properties in Porous Si ₃ N ₄ Ceramic for Broadband Highâ€Performance Microwave Absorption. Advanced Functional Materials, 2018, 28, 1707205.	7.8	425
10	Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon, 2014, 73, 185-193.	5.4	424
11	Ti ₃ C ₂ MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2017, 5, 4068-4074.	2.7	345
12	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	4.0	323
13	Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters. Journal of Physical Chemistry C, 2013, 117, 19701-19711.	1.5	322
14	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 11803-11810.	4.0	315
15	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	5.4	280
16	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346-353.	5.4	253
17	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	3.6	245
18	Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon, 2019, 145, 61-66.	5.4	237

#	Article	IF	CITATIONS
19	Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. Journal of the European Ceramic Society, 2016, 36, 2695-2703.	2.8	221
20	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon, 2017, 111, 94-102.	5.4	184
21	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
22	Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68, 501-510.	5.4	178
23	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti ₂ CT _x MXene. Journal of Materials Chemistry C, 2017, 5, 7621-7628.	2.7	177
24	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Interfaces, 2018, 10, 34524-34533.	4.0	172
25	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon, 2019, 146, 210-217.	5.4	161
26	In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon, 2016, 107, 36-45.	5.4	158
27	Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. Journal of Materials Chemistry C, 2017, 5, 7479-7488.	2.7	146
28	Microwave-Absorbing Polymer-Derived Ceramics from Cobalt-Coordinated Poly(dimethylsilylene)diacetylenes. Journal of Physical Chemistry C, 2016, 120, 18721-18732.	1.5	112
29	Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Advances, 2016, 6, 6467-6474.	1.7	101
30	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon, 2019, 148, 421-429.	5.4	100
31	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 22628-22636.	4.0	99
32	Synthesis and EMW absorbing properties of nano SiC modified PDC–SiOC. Journal of Materials Chemistry C, 2016, 4, 5962-5969.	2.7	96
33	High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. Journal of Materials Science, 2015, 50, 1478-1487.	1.7	91
34	Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon, 2019, 147, 276-283.	5.4	91
35	Novel Scale‣ike Structures of Graphite/TiC/Ti ₃ C ₂ Hybrids for Electromagnetic Absorption. Advanced Electronic Materials, 2018, 4, 1700617.	2.6	86
36	Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	77

#	Article	IF	CITATIONS
37	Three-Dimensional Printing of Ti3SiC2-Based Ceramics. Journal of the American Ceramic Society, 2011, 94, 969-972.	1.9	72
38	Dielectric properties of Si3N4–SiCN composite ceramics in X-band. Ceramics International, 2012, 38, 6015-6020.	2.3	69
39	Effect of Aluminum Doping on Microwave Absorption Properties of <scp><scp>ZnO</scp></scp> / <scp><scp>ZrSiO</scp></scp> ₄ Composite Ceramics. Journal of the American Ceramic Society, 2012, 95, 3158-3165.	1.9	67
40	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Applied Materials & Interfaces, 2019, 11, 5364-5372.	4.0	64
41	Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. Journal of Materials Science and Technology, 2019, 35, 2859-2867.	5.6	60
42	Threeâ€Dimensional Printing of Nanolaminated Ti ₃ AlC ₂ Toughened TiAl ₃ –Al ₂ O ₃ Composites. Journal of the American Ceramic Society, 2007, 90, 2128-2134.	1.9	57
43	Highâ€Temperature Electromagnetic Wave Absorption Properties of <scp><scp>ZnO</scp></scp> / <scp><scp>ZrSiO</scp>4 Composite Ceramics. Journal of the American Ceramic Society, 2013, 96, 2211-2217.</scp>	1.9	54
44	Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution. Journal of Cleaner Production, 2019, 234, 588-596.	4.6	51
45	Near-Net-Shape Fabrication of Ti3AlC2-Based Composites. International Journal of Applied Ceramic Technology, 2007, 4, 184-190.	1.1	49
46	Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon, 2013, 64, 541-544.	5.4	49
47	Single-source-precursor synthesis and electromagnetic properties of novel RGO–SiCN ceramic nanocomposites. Journal of Materials Chemistry C, 2017, 5, 7950-7960.	2.7	48
48	Microstructure and Mechanical Properties of Lu ₂ O ₃ â€Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Poreâ€Forming Agent. International Journal of Applied Ceramic Technology, 2010, 7, 391-398.	1.1	46
49	A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. Journal of the European Ceramic Society, 2018, 38, 4189-4197.	2.8	44
50	Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. Journal of Alloys and Compounds, 2020, 823, 153864.	2.8	40
51	Mechanical Behavior and Electromagnetic Interference Shielding Properties of C/SiC–Ti ₃ Si(Al)C ₂ . Journal of the American Ceramic Society, 2016, 99, 1717-1724.	1.9	39
52	Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology, 2018, 29, 184003.	1.3	39
53	Hierarchical carbon nanowires network modified PDCs-SiCN with improved microwave absorption performance. Ceramics International, 2019, 45, 14238-14248.	2.3	36
54	In situ growth of one-dimensional carbon-rich SiC nanowires in porous Sc2Si2O7 ceramics with excellent microwave absorption properties. Ceramics International, 2018, 44, 22784-22793.	2.3	34

#	Article	IF	CITATIONS
55	Microstructure and Properties of Porous Si3N4 Ceramics with a Dense Surface. International Journal of Applied Ceramic Technology, 2011, 8, 627-636.	1.1	33
56	Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thicknesses. Ceramics International, 2015, 41, 1695-1700.	2.3	32
57	Microstructure, Thermophysical, and Ablative Performances of a 3D Needled C/C–SiC Composite. International Journal of Applied Ceramic Technology, 2010, 7, 197-206.	1.1	31
58	Crystallization Mechanism of <scp>CVD</scp> Si ₃ N ₄ –Si <scp>CN</scp> Composite Ceramics Annealed in N ₂ Atmosphere and Their Excellent <scp>EMW</scp> Absorption Properties. Journal of the American Ceramic Society, 2016, 99, 2672-2679.	1.9	30
59	Light-weight and highly flexible TaC modified PyC fiber fabrics derived from cotton fiber textile with excellent electromagnetic shielding effectiveness. Chemical Engineering Journal, 2020, 387, 124085.	6.6	30
60	Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites. Ceramics International, 2014, 40, 399-408.	2.3	29
61	Multiscale designed SiC _f /Si ₃ N ₄ composite for low and high frequency cooperative electromagnetic absorption. Journal of the American Ceramic Society, 2018, 101, 5552-5563.	1.9	29
62	Microstructure and Properties of Carbon Fiber Reinforced SiC Matrix Composites Containing Ti ₃ SiC ₂ . Advanced Engineering Materials, 2014, 16, 670-683.	1.6	28
63	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. Journal of the American Ceramic Society, 2019, 102, 5305-5315.	1.9	28
64	Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfC _x N _{1â^'x} /C ceramic nanocomposites. Journal of Materials Chemistry C, 2019, 7, 10683-10693.	2.7	27
65	Microstructure and Mechanical Properties of SiC and Carbon Hybrid Fiber Reinforced SiC Matrix Composite. International Journal of Applied Ceramic Technology, 2011, 8, 308-316.	1.1	26
66	Fabrication and electromagnetic interference shielding effectiveness of Ti 3 Si(Al)C 2 modified Al 2 O 3 /SiC composites. Ceramics International, 2016, 42, 9448-9454.	2.3	24
67	Role of singleâ€sourceâ€precursor structure on microstructure and electromagnetic properties of <scp>CNT</scp> sâ€5i <scp>CN</scp> nanocomposites. Journal of the American Ceramic Society, 2017, 100, 4649-4660.	1.9	24
68	Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface. Materials, 2018, 11, 1771.	1.3	21
69	Thermodynamic Analysis on the Codeposition of <scp><scp>SiC</scp></scp> â€" <scp>Si</scp> 3 <scp><scp>N</scp></scp> _{4Composite Ceramics by Chemical Vapor Deposition using <scp><scp>SiCl</scp></scp>₄â€"<scp><scp>NH</scp></scp>₃â€"<scp>CH<td>ıb> 1.9 :p> </td></scp>}	ıb> 1.9 :p>	20 ₄
70	Effects of particle sizes and contents of ceramic Society, 2013, 96, 959966. composites. Ceramics International, 2014, 40, 14029-14037.	2.3	20
71	Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis. Journal of Materials Research, 2017, 32, 3394-3401.	1.2	20
72	Microstructure and <scp>EMW</scp> absorption properties of <scp>CVI</scp> Si ₃ N ₄ –Si <scp>CN</scp> ceramics with <scp>BN</scp> interface annealed in N ₂ atmosphere. Journal of the American Ceramic Society, 2018, 101, 1201-1210.	1.9	20

#	Article	IF	CITATIONS
73	Nearâ€Netâ€Shape Fabrication of <scp>T</scp> i ₃ <scp>S</scp> i <scp>C</scp> ₂ â€base Ceramics by Threeâ€Dimensional Printing. International Journal of Applied Ceramic Technology, 2015, 12, 71-80.	ed 1.1	19
74	Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites. Ceramics International, 2016, 42, 4984-4992.	2.3	19
75	Thermal stability and dielectric properties of 2D Ti ₂ C MXenes via annealing under a gas mixture of Ar and H ₂ atmosphere. Functional Composites and Structures, 2019, 1, 015002.	1.6	19
76	Microstructure and the dielectric properties of SiCN–Si3N4 ceramics fabricated via LPCVD/CVI. Ceramics International, 2014, 40, 5097-5102.	2.3	18
77	The Microstructure and Dielectric Properties of SiBCN Ceramics FabricatedÂVia LPCVD/CVI. Journal of the American Ceramic Society, 2015, 98, 2703-2706.	1.9	16
78	Mechanical and Electromagnetic Interference Shielding Behavior of C/SiC Composite Containing Ti ₃ SiC ₂ . Advanced Engineering Materials, 2018, 20, 1700590.	1.6	16
79	Effects of Graphitization Degree in Threeâ€Dimensional Needled C/SiC Composites on Tribological Properties. International Journal of Applied Ceramic Technology, 2011, 8, 317-328.	1.1	13
80	Thermodynamic calculations on the chemical vapor deposition of Si–C–N from the SiCl4–NH3–C3H6–H2–Ar system. Ceramics International, 2013, 39, 3971-3977.	2.3	12
81	Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Advanced Composites and Hybrid Materials, 2018, 1, 685-695.	9.9	11
82	Reactive Synthesis of Ceramicâ€Metal Composites. Advanced Engineering Materials, 2018, 20, 1800324.	1.6	11
83	Thermophysical properties of three-dimensional ceramic-filler-modified carbon/carbon composites. Ceramics International, 2019, 45, 1302-1307.	2.3	11
84	Thermodynamic calculation for the chemical vapor deposition of silicon carbonitride. Journal of the European Ceramic Society, 2014, 34, 3607-3618.	2.8	10
85	Relationship between microstructure and electromagnetic properties of SiC fibers. Journal of the American Ceramic Society, 2020, 103, 4352-4362.	1.9	10
86	Synthesis and Electromagnetic Shielding Property of Pyrolytic Carbonâ€Silicon Nitride Ceramics with Dense Silicon Nitride Coating. Journal of the American Ceramic Society, 2012, 95, 1038-1041.	1.9	9
87	Negative permittivity behavior of titanium nitride/polyphenylene sulfide "metacomposites―under radio frequency. Journal of Materials Science: Materials in Electronics, 2018, 29, 12144-12151.	1.1	9
88	Erosion Behavior of <scp><scp>C/SiC</scp></scp> Composites in Atomic Oxygen. International Journal of Applied Ceramic Technology, 2013, 10, 168-174.	1.1	8
89	Oxidation Behavior of Tyranno ZMI-SiC Fiber/SiC-SiBC Matrix Composite from 800 to 1200 °C. Materials, 2018, 11, 1367.	1.3	7
90	Effects of alumina hollow microspheres on the properties of water-borne polyurethane films. Journal of Materials Research, 2018, 33, 2486-2493.	1.2	5

#	Article	IF	CITATIONS
91	The comparison of microstructure and oxidation behaviors of (SiC-C)/PyC/SiC and C/PyCHT/SiC composites in air. Science and Engineering of Composite Materials, 2015, 22, .	0.6	3
92	Microstructure and Dielectric Property of 3D BNf/Si3N4 Fabricated by CVI Process. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 818-823.	0.4	3
93	Ablation Behavior of Zr–Al(Si)–C Layered Carbides Modified 3D Needled C/SiC Composites. Advanced Engineering Materials, 2019, 21, 1800936.	1.6	3
94	The Physical Essence of Mono-dispersed Nanometer Particle Surface Energy by Boundary bond Interaction. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	1
95	Electromagnetic Performance of CVD Si3N4–SiCN Ceramics Oxidized from 500 to 1000 °C. Advanced Engineering Materials, 2019, 21, 1800834.	1.6	1
96	Three-Dimentional Printing of Ti-Al-O-C Composites. Ceramic Engineering and Science Proceedings, 0, , 473-482.	0.1	1
97	Fabrication of Porous Silicon Nitride Ceramics with Gradient Microstructure. Ceramic Engineering and Science Proceedings. 0. , 349-357.	0.1	0