
Woojin An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered Cooperative Functions of PRMT1, p300, and CARM1 in Transcriptional Activation by p53. Cell, 2004, 117, 735-748.	28.9	445
2	FACT-Mediated Exchange of Histone Variant H2AX Regulated by Phosphorylation of H2AX and ADP-Ribosylation of Spt16. Molecular Cell, 2008, 30, 86-97.	9.7	219
3	CCAR1, a Key Regulator of Mediator Complex Recruitment to Nuclear Receptor Transcription Complexes. Molecular Cell, 2008, 31, 510-519.	9.7	133
4	Isolation and Characterization of a Novel H1.2 Complex That Acts as a Repressor of p53-mediated Transcription. Journal of Biological Chemistry, 2008, 283, 9113-9126.	3.4	104
5	Selective Requirements for Histone H3 and H4 N Termini in p300-Dependent Transcriptional Activation from Chromatin. Molecular Cell, 2002, 9, 811-821.	9.7	98
6	Requirement of Histone Methyltransferase SMYD3 for Estrogen Receptor-mediated Transcription. Journal of Biological Chemistry, 2009, 284, 19867-19877.	3.4	88
7	MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes and Development, 2016, 30, 208-219.	5.9	87
8	Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Research, 2015, 43, 8868-8883.	14.5	63
9	Linker Histone H1.2 Cooperates with Cul4A and PAF1 to Drive H4K31ÂUbiquitylation-Mediated Transactivation. Cell Reports, 2013, 5, 1690-1703.	6.4	58
10	Reconstitution and Transcriptional Analysis of Chromatin In Vitro. Methods in Enzymology, 2003, 377, 460-474.	1.0	52
11	VprBP Has Intrinsic Kinase Activity Targeting Histone H2A and Represses Gene Transcription. Molecular Cell, 2013, 52, 459-467.	9.7	46
12	Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Scientific Reports, 2015, 5, 16714.	3.3	44
13	Vpr-Binding Protein Antagonizes p53-Mediated Transcription via Direct Interaction with H3 Tail. Molecular and Cellular Biology, 2012, 32, 783-796.	2.3	38
14	p53 Requires an Intact C-Terminal Domain for DNA Binding and Transactivation. Journal of Molecular Biology, 2012, 415, 843-854.	4.2	36
15	Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7949-E7958.	7.1	35
16	Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. Cell Reports, 2018, 24, 224-237.	6.4	29
17	A <i>HOTAIR</i> regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Research, 2020, 30, 155-163.	5.5	28
18	Histone acetylation and methylation: combinatorial players for transcriptional regulation. Sub-Cellular Biochemistry, 2007, 41, 351-69.	2.4	28

Woojin An

#	Article	IF	CITATIONS
19	Membrane Anchoring of α-Helical Proteins: Role of Tryptophan. Journal of Physical Chemistry B, 2018, 122, 1185-1194.	2.6	25
20	Direct Association of p300 with Unmodified H3 and H4 N Termini Modulates p300-dependent Acetylation and Transcription of Nucleosomal Templates. Journal of Biological Chemistry, 2003, 278, 1504-1510.	3.4	23
21	H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis. Epigenetics and Chromatin, 2018, 11, 23.	3.9	21
22	MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1α and H1.2. Oncogene, 2018, 37, 5749-5765.	5.9	20
23	A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors. Journal of Biological Chemistry, 2016, 291, 17536-17546.	3.4	17
24	p32 is a negative regulator of p53 tetramerization and transactivation. Molecular Oncology, 2019, 13, 1976-1992.	4.6	17
25	DNMT and HDAC inhibitors modulate MMP-9-dependent H3ÂN-terminal tail proteolysis and osteoclastogenesis. Epigenetics and Chromatin, 2019, 12, 25.	3.9	14
26	VprBP directs epigenetic gene silencing through histone H2A phosphorylation in colon cancer. Molecular Oncology, 2021, 15, 2801-2817.	4.6	14
27	MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis. Oncogene, 2022, 41, 560-570.	5.9	12
28	Purification and Characterization of Cellular Proteins Associated with Histone H4 Tails. Journal of Biological Chemistry, 2007, 282, 21024-21031.	3.4	10
29	MMP-2 is a novel histone H3 N-terminal protease necessary for myogenic gene activation. Epigenetics and Chromatin, 2021, 14, 23.	3.9	8
30	Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions. Scientific Reports, 2015, 5, 14558.	3.3	5
31	Epigenetic Modification as a Regulatory Mechanism for Spatiotemporal Dynamics of ANO1 Expression in Salivary Glands. International Journal of Molecular Sciences, 2019, 20, 6298.	4.1	2
32	Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State. Journal of Molecular Biology, 2021, 433, 166832.	4.2	2