Anna Caruso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799889/publications.pdf

Version: 2024-02-01

257450 330143 1,410 38 24 37 citations h-index g-index papers 38 38 38 1511 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	\hat{l}^2 -Caryophyllene: A Sesquiterpene with Countless Biological Properties. Applied Sciences (Switzerland), 2019, 9, 5420.	2.5	139
2	MIBE acts as antagonist ligand of both estrogen receptor \hat{l}_{\pm} and GPER in breast cancer cells. Breast Cancer Research, 2012, 14, R12.	5.0	81
3	Carbazole Derivatives as Antiviral Agents: An Overview. Molecules, 2019, 24, 1912.	3.8	75
4	Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. Journal of Materials Chemistry B, 2014, 2, 6619-6625.	5.8	73
5	Synthesis and cytotoxic activity evaluation of 2,3-thiazolidin-4-one derivatives on human breast cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4990-4995.	2.2	62
6	Carbazole derivatives: a promising scenario for breast cancer treatment. Mini-Reviews in Medicinal Chemistry, 2016, 16, 630-643.	2.4	60
7	New insights for the use of quercetin analogs in cancer treatment. Future Medicinal Chemistry, 2017, 9, 2011-2028.	2.3	59
8	From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126905.	2.2	52
9	Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. European Journal of Pharmaceutical Sciences, 2017, 96, 263-272.	4.0	49
10	Acetamide Derivatives with Antioxidant Activity and Potential Anti-Inflammatory Activity. Molecules, 2010, 15, 2028-2038.	3.8	48
11	Novel Gold and Silver Carbene Complexes Exert Antitumor Effects Triggering the Reactive Oxygen Species Dependent Intrinsic Apoptotic Pathway. ChemMedChem, 2017, 12, 2054-2065.	3.2	47
12	Biological activity of 3-chloro-azetidin-2-one derivatives having interesting antiproliferative activity on human breast cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6401-6405.	2.2	45
13	N-Alkyl Carbazole Derivatives as New Tools for Alzheimer's Disease: Preliminary Studies. Molecules, 2014, 19, 9307-9317.	3.8	41
14	3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. European Journal of Medicinal Chemistry, 2016, 107, 275-287.	5 . 5	39
15	N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 434-444.	5. 2	39
16	Synthesis, characterization and cytotoxic activity on breast cancer cells of new half-titanocene derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3458-3462.	2.2	38
17	Synthesis, inhibition of NO production and antiproliferative activities of some indole derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1148-1153.	5. 2	37
18	Inhibition of human topoisomerase I and II and anti-proliferative effects on MCF-7 cells by new titanocene complexes. Bioorganic and Medicinal Chemistry, 2015, 23, 7302-7312.	3.0	37

#	Article	IF	CITATIONS
19	Synthesis and evaluation of cytotoxic activities of new guanidines derived from carbazoles. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 467-472.	2.2	35
20	A rapid and versatile synthesis of novel pyrimido [5,4-b] carbazoles. Tetrahedron, 2009, 65, 10400-10405.	1.9	33
21	Antiproliferative activity of some 1,4-dimethylcarbazoles on cells that express estrogen receptors: part I. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 609-613.	5.2	33
22	Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. European Journal of Medicinal Chemistry, 2019, 181, 111583.	5 . 5	32
23	Inhibition of Human Topoisomeraseâ€II by <i>N</i> , <i></i>	3.2	28
24	(6-Bromo-1,4-dimethyl-9 <i>H</i> -carbazol-3-yl-methylene)-hydrazine (Carbhydraz) Acts as a GPER Agonist in Breast Cancer Cells. Current Topics in Medicinal Chemistry, 2015, 15, 1035-1042.	2.1	27
25	Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives. Bioorganic Chemistry, 2020, 105, 104440.	4.1	24
26	New Trimethoxybenzamides and Trimethoxyphenylureas Derived from Dimethylcarbazole as Cytotoxic Agents. Part I. Journal of Heterocyclic Chemistry, 2014, 51, E294.	2.6	23
27	Indenopyrazole oxime ethers: Synthesis and \hat{l}^21 -adrenergic blocking activity. European Journal of Medicinal Chemistry, 2015, 92, 672-681.	5. 5	21
28	New titanocene derivatives with high antiproliferative activity against breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 136-140.	2.2	19
29	Crystallographic Study and Biological Evaluation of 1,4-dimethyl- <i>N</i> -alkylcarbazoles†. Current Topics in Medicinal Chemistry, 2015, 15, 973-979.	2.1	19
30	Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies. BioMed Research International, 2014, 2014, 1-7.	1.9	18
31	Enhanced cellular uptake by "pharmaceutically oriented devices―of new simplified analogs of Linezolid with antimicrobial activity. International Journal of Pharmaceutics, 2014, 461, 163-170.	5.2	16
32	Chloro-1,4-dimethyl-9H-carbazole Derivatives Displaying Anti-HIV Activity. Molecules, 2018, 23, 286.	3.8	15
33	Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini-Reviews in Medicinal Chemistry, 2020, 20, 444-465.	2.4	12
34	Four Partners, Threeâ€Step, Oneâ€Pot Reaction for a Library of New 2â€Alkyl(dialkyl)aminoquinazolinâ€4(3 <i>H</i>)â€ones. Journal of Heterocyclic Chemistry, 2014, 51, E282.	2.6	8
35	α–Ή Alkenylâ€bisâ€ <i>S</i> â€Guanidine Thiourea Dihydrobromide Affects HeLa Cell Growth Hampering Tubu Polymerization. ChemMedChem, 2020, 15, 2306-2316.	lin 3.2	8
36	Carbazole Derivatives as STAT Inhibitors: An Overview. Applied Sciences (Switzerland), 2021, 11, 6192.	2.5	8

Anna Caruso

#	Article	IF	CITATION
37	Carbazole and Simplified Derivatives: Novel Tools toward Î ² -Adrenergic Receptors Targeting. Applied Sciences (Switzerland), 2021, 11, 5486.	2.5	7
38	Nutraceuticals Obtained by SFE-CO2 from Cladodes of Two Opuntia ficus-indica (L.) Mill Wild in Calabria. Applied Sciences (Switzerland), 2021, 11, 477.	2.5	3