Paloma López GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799593/publications.pdf

Version: 2024-02-01

106 papers 4,167 citations

33 h-index 60 g-index

109 all docs

109 does citations

109 times ranked 3692 citing authors

#	Article	IF	Citations
1	Biogenic amines in fermented foods. European Journal of Clinical Nutrition, 2010, 64, S95-S100.	1.3	348
2	Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. Journal of Molecular Biology, 1986, 192, 753-765.	2.0	251
3	Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Applied Microbiology and Biotechnology, 2012, 96, 1383-1394.	1.7	205
4	Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. International Journal of Molecular Sciences, 2012, 13, 6026-6039.	1.8	131
5	Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. Journal of Bacteriology, 1987, 169, 4320-4326.	1.0	126
6	Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Applied Microbiology and Biotechnology, 2014, 98, 3691-3700.	1.7	122
7	Evidence that the Essential Response Regulator YycF in Streptococcus pneumoniae Modulates Expression of Fatty Acid Biosynthesis Genes and Alters Membrane Composition. Journal of Bacteriology, 2005, 187, 2357-2367.	1.0	118
8	Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydrate Polymers, 2013, 93, 57-64.	5.1	95
9	Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 2015, 124, 292-301.	5.1	94
10	Pediococcus parvulusgtf Gene Encoding the GTF Glycosyltransferase and Its Application for Specific PCR Detection of β-d-Glucan–Producing Bacteria in Foods and Beverages. Journal of Food Protection, 2006, 69, 161-169.	0.8	93
11	Naturally occurring 2-substituted $(1,3)$ - \hat{l}^2 -d-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresource Technology, 2010, 101, 9254-9263.	4.8	90
12	Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. European Food Research and Technology, 2008, 227, 1475-1484.	1.6	86
13	Probiotic Properties of the 2-Substituted (1,3)-β- <scp>d</scp> -Glucan-Producing Bacterium <i>Pediococcus parvulus</i> 2.6. Applied and Environmental Microbiology, 2009, 75, 4887-4891.	1.4	86
14	Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Applied Microbiology and Biotechnology, 2015, 99, 3479-3490.	1.7	86
15	Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Applied Microbiology and Biotechnology, 2014, 98, 7569-7581.	1.7	85
16	Lactobacillus plantarum strains for multifunctional oat-based foods. LWT - Food Science and Technology, 2016, 68, 288-294.	2.5	81
17	Transcriptional Control of the Low-Temperature-Inducible <i>des</i> Gene, Encoding the î"5 Desaturase of <i>Bacillus subtilis</i> Journal of Bacteriology, 1999, 181, 7028-7033.	1.0	80
18	Contribution of Citrate Metabolism to the Growth of <i>Lactococcus lactis</i> CRL264 at Low pH. Applied and Environmental Microbiology, 2008, 74, 1136-1144.	1.4	67

#	Article	IF	CITATIONS
19	Activation of the Diacetyl/Acetoin Pathway in <i>Lactococcus lactis</i> subsp. <i>lactis</i> bv. diacetylactis CRL264 by Acidic Growth. Applied and Environmental Microbiology, 2008, 74, 1988-1996.	1.4	66
20	Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydrate Polymers, 2017, 174, 646-657.	5.1	66
21	Selective advantage of deletions enhancing chloramphenicol acetyltransferase gene expression in Streptococcus pneumoniae plasmids. Gene, 1986, 41, 153-163.	1.0	60
22	Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. International Journal of Food Microbiology, 2004, 93, 335-347.	2.1	55
23	Dextran production by Lactobacillus sakei MN1 coincides with reduced autoagglutination, biofilm formation and epithelial cell adhesion. Carbohydrate Polymers, 2017, 168, 22-31.	5.1	52
24	Role of Tyramine Synthesis by Food-Borne <i>Enterococcus durans</i> in Adaptation to the Gastrointestinal Tract Environment. Applied and Environmental Microbiology, 2011, 77, 699-702.	1.4	50
25	Citrate utilization gene cluster of the Lactococcus lactis biovar diacetylactis: organization and regulation of expression. Molecular Genetics and Genomics, 1995, 246, 590-599.	2.4	48
26	Plasmid structural instability associated with pC194 replication functions. Journal of Bacteriology, 1989, 171, 2271-2277.	1.0	46
27	A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Streptococcus pneumoniae. Journal of Bacteriology, 1995, 177, 66-74.	1.0	44
28	Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products. LWT - Food Science and Technology, 2018, 91, 249-257.	2.5	41
29	Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology (United Kingdom), 2004, 150, 1103-1111.	0.7	40
30	Immunomodulation of human macrophages and myeloid cells by 2-substituted (1–3)-β-d-glucan from P. parvulus 2.6. Carbohydrate Polymers, 2014, 112, 109-113.	5.1	39
31	Citl, a Transcription Factor Involved in Regulation of Citrate Metabolism in Lactic Acid Bacteria. Journal of Bacteriology, 2005, 187, 5146-5155.	1.0	38
32	Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli. Applied Microbiology and Biotechnology, 2012, 96, 171-181.	1.7	37
33	Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched $(1,3)$ - \hat{l}^2 -d-glucan. Journal of Dairy Science, 2011, 94, 3271-3278.	1.4	36
34	A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyldihydropterin pyrophosphokinase activities. Journal of Bacteriology, 1993, 175, 2214-2220.	1.0	35
35	Physical structure and genetic expression of the sulfonamide-resistance plasmid pLS80 and its derivatives in Streptococcus pneumoniae and Bacillus subtilis. Molecular Genetics and Genomics, 1984, 195, 402-410.	2.4	34
36	\hat{l}^2 -Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Frontiers in Microbiology, 2018, 9, 1684.	1.5	34

#	Article	IF	CITATIONS
37	Interspecific plasmid transfer between Streptococcus pneumoniae and Bacillus subtilis. Molecular Genetics and Genomics, 1982, 188, 195-201.	2.4	33
38	Comparative Proteomic Analysis of Lactobacillus plantarum WCFS1 and \hat{l} "ctsR Mutant Strains Under Physiological and Heat Stress Conditions. International Journal of Molecular Sciences, 2012, 13, 10680-10696.	1.8	33
39	Comparative expression of the pC194 cat gene in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli. Gene, 1990, 86, 71-79.	1.0	32
40	Transcriptional Control of the Citrate-InduciblecitMCDEFGRP Operon, Encoding Genes Involved in Citrate Fermentation in Leuconostoc paramesenteroides. Journal of Bacteriology, 2000, 182, 3904-3912.	1.0	32
41	Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Frontiers in Microbiology, 2019, 10, 1748.	1.5	32
42	Heterologous Expression of a Position 2-Substituted (1â†'3)-β- <scp>d</scp> -Glucan in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2008, 74, 5259-5262.	1.4	31
43	In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. International Journal of Molecular Sciences, 2017, 18, 1588.	1.8	31
44	Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocolloids, 2019, 89, 613-622.	5 . 6	31
45	Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods, 2022, 11, 1284.	1.9	31
46	Construction of a Tightly Regulated Plasmid Vector for Streptococcus pneumoniae: Controlled Expression of the Green Fluorescent Protein. Plasmid, 2000, 43, 205-213.	0.4	30
47	A partial proteome reference map of the wine lactic acid bacterium <i>Oenococcus oeni</i> ATCC BAA-1163. Open Biology, 2014, 4, 130154.	1.5	28
48	Cloning of a gene encoding a DNA polymerase-exonuclease of Streptococcus pneumoniae. Gene, 1986, 44, 79-88.	1.0	27
49	Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiology, 2012, 12, 247.	1.3	27
50	Conversion of Pipecolic Acid into Lysine in Penicillium chrysogenum Requires Pipecolate Oxidase and Saccharopine Reductase: Characterization of the lys7 Gene Encoding Saccharopine Reductase. Journal of Bacteriology, 2001, 183, 7165-7172.	1.0	26
51	The 5' to 3' exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae. Molecular Microbiology, 1992, 6, 3009-3019.	1.2	25
52	Multiple roles for DNA polymerase I in establishment and replication of the promiscuous plasmid pLS1. Molecular Microbiology, 1994, 14, 773-783.	1.2	25
53	DNA sequence of folate biosynthesis gene sulD, encoding hydroxymethyldihydropterin pyrophosphokinase in Streptococcus pneumoniae, and characterization of the enzyme. Journal of Bacteriology, 1990, 172, 4766-4774.	1.0	24
54	A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microbial Cell Factories, 2014, 13, 77.	1.9	24

#	Article	IF	CITATIONS
55	Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 247-253.	1.4	24
56	The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae. Frontiers in Microbiology, 2016, 7, 1326.	1.5	24
57	Cloning and molecular characterization of the citrate utilizationcitMCDEFGRPcluster of Leuconostoc paramesenteroides. FEMS Microbiology Letters, 1999, 174, 231-238.	0.7	22
58	The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydrate Polymers, 2021, 253, 117254.	5.1	22
59	Transfer and expression of recombinant plasmids carrying pneumococcal mal genes in Bacillus subtilis. Gene, 1984, 28, 301-310.	1.0	21
60	Dextransucrase Expression Is Concomitant with that of Replication and Maintenance Functions of the pMN1 Plasmid in Lactobacillus sakei MN1. Frontiers in Microbiology, 2017, 8, 2281.	1.5	21
61	Cloning and molecular characterization of the citrate utilization citMCDEFGRP cluster of Leuconostoc paramesenteroides. FEMS Microbiology Letters, 1999, 174, 231-238.	0.7	20
62	Isolation and Characterization of Unsaturated Fatty Acid Auxotrophs of <i>Streptococcus pneumoniae </i> and <i>Streptococcus mutans </i> Journal of Bacteriology, 2007, 189, 8139-8144.	1.0	20
63	Processing of as - 48ABC RNA in AS-48 Enterocin Production by Enterococcus faecalis. Journal of Bacteriology, 2008, 190, 240-250.	1.0	20
64	Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiology Letters, 2000, 183, 229-234.	0.7	18
65	The Last Gene of the fla/che Operon in Bacillus subtilis, ylxL, Is Required for Maximal ÏfD Function. Journal of Bacteriology, 2004, 186, 4025-4029.	1.0	18
66	A real-time PCR assay for detection and quantification of 2-branched (1,3)-β-d–glucan producing lactic acid bacteria in cider. International Journal of Food Microbiology, 2010, 143, 26-31.	2.1	18
67	A specific immunological method to detect and quantify bacterial 2-substituted (1,3)- \hat{l}^2 -d-glucan. Carbohydrate Polymers, 2014, 113, 39-45.	5.1	17
68	Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin. Foods, 2021, 10, 2004.	1.9	17
69	Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein. Microbiology (United Kingdom), 2000, 146, 1267-1273.	0.7	17
70	Complementation of Bacillus subtilis polA mutants by DNA polymerase I from Streptococcus pneumoniae. Molecular Genetics and Genomics, 1987, 210, 203-210.	2.4	16
71	Determinant role of E. coli RNase III in the decay of both specific and heterologous mRNAs. FEMS Microbiology Letters, 2006, 157, 31-38.	0.7	15
72	Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts. Frontiers in Microbiology, 2017, 8, 2393.	1.5	15

#	Article	IF	Citations
7 3	Analysis of technological and probiotic properties of Algerian L. mesenteroides strains isolated from dairy and non-dairy products. Journal of Functional Foods, 2018, 49, 351-361.	1.6	15
74	Different Modes of Regulation of the Expression of Dextransucrase in Leuconostoc lactis AV1n and Lactobacillus sakei MN1. Frontiers in Microbiology, 2019, 10, 959.	1.5	15
7 5	Streptococcus pneumoniae DNA polymerase I lacks 3'-to-5' exonuclease activity: localization of the 5'-to-3' exonucleolytic domain. Journal of Bacteriology, 1992, 174, 2014-2024.	1.0	14
76	RNA processing is involved in the post-transcriptional control of the citQRP operon from Lactococcus lactis biovar diacetylactis. Molecular Genetics and Genomics, 1998, 258, 9-15.	2.4	12
77	Biochemical Analysis of Point Mutations in the 5′-3′ Exonuclease of DNA Polymerase I of Streptococcus pneumoniae. Journal of Biological Chemistry, 2001, 276, 19172-19181.	1.6	12
78	Streptococcus pneumoniae polA gene is expressed in Escherichia coli and can functionally substitute for the E. coli polA gene. Journal of Bacteriology, 1987, 169, 4869-4871.	1.0	11
79	Development of an inducible system to control and easily monitor gene expression in Lactococcus lactis. Plasmid, 2004, 51, 256-264.	0.4	11
80	Controlling the formation of biogenic amines in fermented foods., 2015,, 273-310.		11
81	The polymerase domain of Streptococcus pneumoniae DNA polymerase I. High expression, purification and characterization. FEBS Journal, 1991, 201, 147-155.	0.2	10
82	Characterization of Pediococcus ethanolidurans CUPV141: A β-D-glucan- and Heteropolysaccharide-Producing Bacterium. Frontiers in Microbiology, 2018, 9, 2041.	1.5	10
83	Functional and Nutritious Beverages Produced by Lactic Acid Bacteria. , 2019, , 419-465.		10
84	Purification and properties of the 5'-3' exonuclease D190 A mutant of DNA polymerase I from Streptococcus pneumoniae. FEBS Journal, 1998, 252, 124-132.	0.2	9
85	Homologous and heterologous expression of RNase III from Lactococcus lactis. Biochemical and Biophysical Research Communications, 2004, 323, 884-890.	1.0	9
86	Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. LWT - Food Science and Technology, 2018, 90, 469-474.	2.5	9
87	Heteropolysaccharide-producing bifidobacteria for the development of functional dairy products. LWT - Food Science and Technology, 2019, 102, 295-303.	2.5	9
88	Current and Future Applications of Bacterial Extracellular Polysaccharides., 2016,, 329-344.		7
89	Food Ingredients Synthesized by Lactic Acid Bacteria. , 2017, , 89-124.		7
90	A new tool for cloning and gene expression in Streptococcus pneumoniae. Plasmid, 2013, 70, 247-253.	0.4	6

#	Article	IF	Citations
91	Draft Genome Sequence of Pediococcus parvulus 2.6, a Probiotic \hat{l}^2 -Glucan Producer Strain. Genome Announcements, 2016, 4, .	0.8	6
92	Purification and properties of the $5\hat{a}\in^2$ - $3\hat{a}\in^2$ exonuclease D10A mutant of DNA polymerase I from Streptococcus pneumoniae: a new tool for DNA sequencing. Journal of Biotechnology, 1998, 63, 17-27.	1.9	5
93	The Ability of Riboflavin-Overproducing Lactiplantibacillus plantarum Strains to Survive Under Gastrointestinal Conditions. Frontiers in Microbiology, 2020, 11, 591945.	1.5	5
94	Selection of Riboflavin Overproducing Strains of Lactic Acid Bacteria and Riboflavin Direct Quantification by Fluorescence. Methods in Molecular Biology, 2021, 2280, 3-14.	0.4	5
95	Evaluation of an O2-Substituted (1–3)-β-D-Glucan, Produced by Pediococcus parvulus 2.6, in ex vivo Models of Crohn's Disease. Frontiers in Microbiology, 2021, 12, 621280.	1.5	5
96	Anti-Inflammatory Effect of an O-2-Substituted (1-3)-Î ² -D-Glucan Produced by Pediococcus parvulus 2.6 in a Caco-2 PMA-THP-1 Co-Culture Model. International Journal of Molecular Sciences, 2022, 23, 1527.	1.8	5
97	Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria., 0, , .		4
98	Deoxyribonucleases of non-pathogenic corynebacteria. FEMS Microbiology Letters, 1987, 44, 343-348.	0.7	3
99	Draft Genome Sequence of Lactobacillus collinoides CUPV237, an Exopolysaccharide and Riboflavin Producer Isolated from Cider. Genome Announcements, 2016, 4, .	0.8	3
100	Phi W-14 DNA inhibits transfection of Bacillus subtilis by SPP1 DNA. Journal of Virology, 1981, 37, 559-563.	1.5	3
101	Influence of Some Antineoplastic Agents on Genetic Exchange in <i>Bacillus subtilis</i> . Chemotherapy, 1980, 26, 309-315.	0.8	1
102	Characterization of an insertion sequence-like element identified in plasmid pCIT264 from Lactococcus lactis subsp. lactis biovar diacetylactis. FEMS Microbiology Letters, 1996, 136, 289-295.	0.7	1
103	Regulation of expression of the Lactococcus lactis subsp. lactis biovar diacetylactis citrate transport system. Dairy Science and Technology, 1998, 78, 11-16.	0.9	1
104	Influence of lectins and polyelectrolytes on transformation of Bacillus subtilis. FEMS Microbiology Letters, 1980, 9, 315-319.	0.7	0
105	Intracellular effects of phage ϕW-14 DNA on transformation of Bacillus subtilis. Molecular Genetics and Genomics, 1984, 193, 85-91.	2.4	0
106	Transcriptional activation of the citrate permease P gene of. Molecular Genetics and Genomics, 1996, 250, 428.	2.4	0