Zsolt Bagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799306/publications.pdf

Version: 2024-02-01

	81900	95266
4,968	39	68
citations	h-index	g-index
127	127	6986
137	137	0300
docs citations	times ranked	citing authors
	citations 137	4,968 39 citations h-index 137 137

#	Article	IF	CITATIONS
1	Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction - implications for Chronic Inflammatory Mechanisms. Current Cardiology Reviews, 2022, 18, .	1.5	3
2	Aging-induced impaired endothelial wall shear stress mechanosensing causes arterial remodeling via JAM-A/F11R shedding by ADAM17. GeroScience, 2022, 44, 349-369.	4.6	10
3	Role of Caveolae in the Development of Microvascular Dysfunction and Hyperglycemia in Type 2 Diabetes. Frontiers in Physiology, 2022, 13, 825018.	2.8	2
4	The Role of CD44v6 in Vascular Rarefaction and Left Ventricular Diastolic Dysfunction in HFpEF. FASEB Journal, 2022, 36, .	0.5	0
5	Reduced microvascular expression of ADAM17 contributes to cognitive impairment in Alzheimer's disease model, APP/PS1 mice. FASEB Journal, 2022, 36, .	0.5	O
6	Association of cerebral microvascular dysfunction and white matter injury in Alzheimer's disease. GeroScience, 2022, 44, 1-14.	4.6	13
7	White matter penetrating arteriole dysfunction correlates with MRI-defined white matter integrity in patients with Alzheimer's disease. Cardiovascular Research, 2022, 118, .	3.8	O
8	Empagliflozin improves endothelial and cardiomyocyte functionÂin human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovascular Research, 2021, 117, 495-507.	3.8	167
9	Rapid decline of resting heart rate trajectories from childhood to young adulthood is paradoxically associated with increased cardiac mass. Acta Cardiologica, 2021, , 1-7.	0.9	2
10	Effects of Race, Cardiac Mass, and Cardiac Load on Myocardial Function Trajectories from Childhood to Young Adulthood: The Augusta Heart Study. Journal of the American Heart Association, 2021, 10, e015612.	3.7	2
11	Role of ADAM17 in Agingâ€induced Vascular Remodeling of Skeletal Muscle Resistance Arteries. FASEB Journal, 2021, 35, .	0.5	O
12	Role of Endothelial Cell Specific Adhesion Molecule in the Development of Pulmonary Microvascular Dysfunction in HFpEF. FASEB Journal, 2021, 35, .	0.5	0
13	Vascular Rarefaction and Perivascular Fibrosis Contribute to the Development of Left Ventricular Diastolic Dysfunction in HFpEF. FASEB Journal, 2021, 35, .	0.5	O
14	Review: Circadian clocks and rhythms in the vascular tree. Current Opinion in Pharmacology, 2021, 59, 52-60.	3.5	6
15	Deficiency of Myeloid Pfkfb3 Protects Mice From Lung Edema and Cardiac Dysfunction in LPS-Induced Endotoxemia. Frontiers in Cardiovascular Medicine, 2021, 8, 745810.	2.4	9
16	Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Frontiers in Physiology, 2020, 11, 584135.	2.8	46
17	Adenosine kinase inhibition enhances microvascular dilator function and improves left ventricle diastolic dysfunction. Microcirculation, 2020, 27, e12624.	1.8	4
18	A Novel Subset of CD95+ Pro-Inflammatory Macrophages Overcome miR155 Deficiency and May Serve as a Switch From Metabolically Healthy Obesity to Metabolically Unhealthy Obesity. Frontiers in Immunology, 2020, 11, 619951.	4.8	12

#	Article	IF	CITATIONS
19	Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 611354.	3.7	3
20	ADAM17 impairs arterial fluid shear stress mechanosensing in aged mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	Pulmonary microvascular dysfunction develops in rodent models of HFpEF. FASEB Journal, 2020, 34, 1-1.	0.5	0
22	Adenosine Kinase Inhibition Augments Conducted Vasodilation and Prevents Left Ventricle Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2019, 12, e005762.	3.9	17
23	Extracellular vesicle integrins act as a nexus for platelet adhesion in cerebral microvessels. Scientific Reports, 2019, 9, 15847.	3.3	9
24	Endothelial adenosine kinase deficiency ameliorates diet-induced insulin resistance. Journal of Endocrinology, 2019, 242, 159-172.	2.6	14
25	The adenosine kinase inhibitor ABTâ€702 improves coronary vasodilator and left ventricle diastolic dysfunction in obese ZSF1 rats. FASEB Journal, 2019, 33, 685.8.	0.5	O
26	ADAM17 impairs F11R/JAMâ€Aâ€mediated wall shear stress mechanosensing and induces agingâ€related inward artery remodeling. FASEB Journal, 2019, 33, 684.15.	0.5	0
27	Obesity impairs ADAM17â€mediated vascularization of pericardial adipose tissue in patients with coronary artery disease. FASEB Journal, 2019, 33, 517.1.	0.5	O
28	Mice with endotheliumâ€selective deletion of adenosine kinase are protected against pressure overload induced left ventricle contractile dysfunction. FASEB Journal, 2019, 33, 532.12.	0.5	0
29	The PDE9A inhibitor PF04447943 improves coronary arteriole vasodilation and left ventricular diastolic dysfunction in HFpEF. FASEB Journal, 2019, 33, 693.10.	0.5	0
30	Vasodilator dysfunction and oligodendrocyte dysmaturation in aging white matter. Annals of Neurology, 2018, 83, 142-152.	5.3	25
31	Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 529-541.	2.4	31
32	Too much TRAFfic at the crossroads of diabetes and endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H65-H67.	3.2	1
33	ADAM17 via F11R/JAMâ€A Shedding Regulates Flow/Wall Shear Stress Mechanosensing in Endothelial Cells. FASEB Journal, 2018, 32, 707.2.	0.5	0
34	Increasing endothelial adenosine via adenosine kinase inhibition augments conducted vasodilation in HFpEF. FASEB Journal, 2018, 32, 579.5.	0.5	0
35	Selectively Impaired Vasodilation of Human White Matter Penetrating Cerebral Arterioles in Microvascular Brain Injury and Alzheimer's disease. FASEB Journal, 2018, 32, 711.15.	0.5	O
36	Abstract 043: Endothelial Adenosine Kinase Deficiency Ameliorates Diet-induced Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0

#	Article	IF	Citations
37	Abstract 096: Progesterone Upregulates Endothelial Mineralocorticoid Receptor Expression Which Predisposes Female Mice to Obesity-Induced Endothelial Dysfunction. Hypertension, 2018, 72, .	2.7	0
38	A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: Implications for diet-induced obesity. Journal of Biological Chemistry, 2017, 292, 6312-6324.	3.4	23
39	Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1180-1193.	2.4	49
40	Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nature Communications, 2017, 8, 943.	12.8	69
41	Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovascular Research, 2017, 113, 1664-1676.	3.8	82
42	Obesity-induced vascular inflammation involves elevated arginase activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R560-R571.	1.8	34
43	Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Molecular Medicine, 2017, 9, 1263-1278.	6.9	64
44	MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2017, 292, 1267-1287.	3.4	107
45	Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II–Dependent Hypertension in Mice. Hypertension, 2016, 67, 661-668.	2.7	31
46	Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1895-1900.	7.1	16
47	Activation of Calpain-2 by Mediators in Pulmonary Vascular Remodeling of Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 384-393.	2.9	27
48	Assessing Myogenic Response and Vasoactivity In Resistance Mesenteric Arteries Using Pressure Myography. Journal of Visualized Experiments, 2015, , e50997.	0.3	17
49	Caveolin-1 prevents sustained angiotensin Il-induced resistance artery constriction and obesity-induced high blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H376-H385.	3.2	24
50	Impaired coronary collateral growth: miR-shaken neutrophils caught in the act. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1321-H1322.	3.2	2
51	Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radical Biology and Medicine, 2015, 89, 793-805.	2.9	39
52	Age-related impairment of conducted dilation in human coronary arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1595-H1601.	3.2	42
53	A Novel Tumor Necrosis Factor–mediated Mechanism of Direct Epithelial Sodium Channel Activation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 522-532.	5.6	49
54	Peroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients. Diabetes, 2014, 63, 1381-1393.	0.6	102

#	Article	IF	CITATIONS
55	Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radical Biology and Medicine, 2014, 73, 201-213.	2.9	87
56	Obesity and Coronary Microvascular Disease – Implications for Adipose Tissue-Mediated Remote Inflammatory Response. Current Vascular Pharmacology, 2014, 12, 453-461.	1.7	33
57	Prevention and Treatment of No-Reflow Phenomenon by Targeting the Coronary Microcirculation. Reviews in Cardiovascular Medicine, 2014, 15, 38-51.	1.4	24
58	Prevention and treatment of no-reflow phenomenon by targeting the coronary microcirculation. Reviews in Cardiovascular Medicine, 2014, 15, 38-51.	1.4	15
59	Obesity and statins are both independent predictors of enhanced coronary arteriolar dilation in patients undergoing heart surgery. Journal of Cardiothoracic Surgery, 2013, 8, 117.	1.1	4
60	Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Internal and Emergency Medicine, 2013, 8, 51-54.	2.0	24
61	Levosimendan and its metabolite OR-1896 elicit KATP channel-dependent dilation in resistance arteries in vivo. Pharmacological Reports, 2013, 65, 1304-1310.	3.3	15
62	Selective Up-Regulation of Arginase-1 in Coronary Arteries of Diabetic Patients. Frontiers in Immunology, 2013, 4, 293.	4.8	14
63	l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice. Frontiers in Immunology, 2013, 4, 480.	4.8	34
64	Increased Tissue Angiotensin-Converting Enzyme Activity Impairs Bradykinin-Induced Dilation of Coronary Arterioles in Obesity. Circulation Journal, 2013, 77, 1867-1876.	1.6	16
65	Effect of a novel stobadine derivative on isolated rat arteries. Interdisciplinary Toxicology, 2013, 6, 63-66.	1.0	3
66	Activation of calpain in pulmonary arterial smooth muscle cells (PASMCs). FASEB Journal, 2013, 27, 1141.5.	0.5	0
67	Loss of endothelial caveolae leads to eNOS uncoupling and impaired flowâ€mediated dilation in human coronary arterioles in diabetes. FASEB Journal, 2013, 27, 900.8.	0.5	0
68	Adipose tissue arteryâ€derived TNF impairs dilation of skeletal muscle resistance arteries in obesity. FASEB Journal, 2013, 27, 900.9.	0.5	0
69	Obesity and statins are predictive of enhanced coronary resistance artery dilation in patients undergoing cardiac surgery. FASEB Journal, 2013, 27, 1185.9.	0.5	0
70	Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R674-R681.	1.8	27
71	Microvascular responsiveness in obesity: implications for therapeutic intervention. British Journal of Pharmacology, 2012, 165, 544-560.	5.4	49
72	Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascular Pharmacology, 2012, 56, 115-121.	2.1	34

#	Article	IF	CITATIONS
73	Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: Rational design through target quantification. Atherosclerosis, 2011, 219, 579-587.	0.8	39
74	Increased availability of angiotensin AT ₁ receptors leads to sustained arterial constriction to angiotensin II in diabetes – role for Rhoâ€kinase activation. British Journal of Pharmacology, 2011, 163, 1059-1068.	5.4	26
75	Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H777-H783.	3.2	78
76	Coronary arterioles of type 2 diabetic patients exhibit diminished dilation to sudden increases in wall shear stress. FASEB Journal, 2011, 25, 1025.4.	0.5	0
77	Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. FASEB Journal, 2011, 25, 1093.13.	0.5	4
78	Conducted vasodilatation in human coronary arterioles. FASEB Journal, 2011, 25, .	0.5	0
79	Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries. Hypertension, 2010, 55, 339-344.	2.7	39
80	Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H18-H24.	3.2	457
81	Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity. Cardiovascular Research, 2010, 87, 732-739.	3.8	37
82	Hypoxic relaxation of penile arteries: involvement of endothelial nitric oxide and modulation by reactive oxygen species. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H915-H924.	3.2	28
83	Cyclooxygenase-2 derived thromboxane A2 and reactive oxygen species mediate flow-induced constrictions of venules in hyperhomocysteinemia. Atherosclerosis, 2010, 208, 43-49.	0.8	13
84	Exacerbation of endothelial dysfunction in aged diabetic mice. FASEB Journal, 2010, 24, 981.9.	0.5	0
85	Insulin supplementation elevates systolic blood pressure and arteriolar tone in mice with Type 2 diabetes. FASEB Journal, 2010, 24, 592.7.	0.5	0
86	Functional evidence for upâ€regulated angiotensin converting enzyme (ACE) in coronary arterioles of rats on high fat diet. FASEB Journal, 2010, 24, 1034.9.	0.5	0
87	Caveolinâ€1 limits the contribution of BK(Ca) channel to EDHFâ€mediated arteriolar dilation. FASEB Journal, 2010, 24, .	0.5	0
88	Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1876-H1881.	3.2	300
89	Thromboxane A ₂ Contributes to the Mediation of Flow-Induced Responses of Skeletal Muscle Venules: Role of Cyclooxygenases 1 and 2. Journal of Vascular Research, 2009, 46, 397-405.	1.4	8
90	Highlights of the 25th Conference of the European Society for Microcirculation. Journal of Vascular Research, 2009, 46, 634-679.	1.4	0

#	Article	IF	CITATIONS
91	Activation of prostaglandin E2 EP1 receptor increases arteriolar tone and blood pressure in mice with type 2 diabetes. Cardiovascular Research, 2009, 83, 148-154.	3.8	41
92	Mechanisms of coronary microvascular adaptation to obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R556-R567.	1.8	30
93	Where Have All the Stem Cells Gone?. Circulation Research, 2009, 104, 280-281.	4.5	11
94	Preserved coronary arteriolar dilatation in patients with type 2 diabetes mellitus: Implications for reactive oxygen species. Pharmacological Reports, 2009, 61, 99-104.	3.3	15
95	Augmented angiotensin Ilâ€induced arteriolar constrictions in mice with type 2 diabetes mellitus ―role for cyclooxygenaseâ€2. FASEB Journal, 2009, 23, 594.1.	0.5	0
96	Role of caveolae in regulating large conductance potassium channel activation in coronary arterioles of rats on high fat diet. FASEB Journal, 2009, 23, 594.7.	0.5	0
97	Caveolae by interfering internalization of AT1 receptors regulate constrictions of isolated arterioles to Ang II. FASEB Journal, 2009, 23, 767.1.	0.5	0
98	High intraluminal pressure via H2O2 upregulates arteriolar constrictions to angiotensin II by increasing the functional availability of AT1 receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H835-H841.	3.2	23
99	Tissue-Specific Regulation of Microvascular Diameter: Opposite Functional Roles of Neuronal and Smooth Muscle Located Vanilloid Receptor-1. Molecular Pharmacology, 2008, 73, 1405-1412.	2.3	113
100	High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2558-H2564.	3.2	58
101	High Glucose Concentrations via Activating Rhoâ€kinase Leads to Augmented and Sustained Angiotensin IIâ€induced Arteriolar Constrictions. FASEB Journal, 2008, 22, 732.11.	0.5	0
102	Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, reduced NO, and enhanced PGH2/TXA2 mediation. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3096-H3104.	3.2	35
103	Adaptation of Vasomotor Function of Human Coronary Arterioles to the Simultaneous Presence of Obesity and Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2348-2354.	2.4	36
104	Asymmetrical Dimethylarginine Inhibits Shear Stress–Induced Nitric Oxide Release and Dilation and Elicits Superoxide-Mediated Increase in Arteriolar Tone. Hypertension, 2007, 49, 563-568.	2.7	41
105	H2O2 increases production of constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone in Type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H649-H656.	3.2	45
106	High intraluminal pressure via increased release of hydrogen peroxide maintains arteriolar responsiveness to angiotensin II. FASEB Journal, 2007, 21, A1248.	0.5	0
107	Aldose reductase inhibition reduces endothelial dysfunction and oxidative stress in skeletal muscle arterioles exposed to hyperglycemia. FASEB Journal, 2007, 21, A834.	0.5	0
108	Multiple effects of diabetes mellitus on the vasomotor responses of human coronary arterioles. FASEB Journal, 2007, 21, A1226.	0.5	0

#	Article	IF	CITATIONS
109	Increased soluble guanylate cyclase (sGC) activity may compensate for the high fat dietâ€induced reduction in NO bioavailability of rat coronary arterioles. FASEB Journal, 2007, 21, A1226.	0.5	O
110	High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2107-H2115.	3.2	88
111	Activation of the Poly(ADP-Ribose) Polymerase Pathway in Human Heart Failure. Molecular Medicine, 2006, 12, 143-152.	4.4	44
112	The levosimendan metabolite OR-1896 elicits vasodilation by activating the KATP and BKCa channels in rat isolated arterioles. British Journal of Pharmacology, 2006, 148, 696-702.	5.4	65
113	Increased Cyclooxygenase-2 Expression and Prostaglandin-Mediated Dilation in Coronary Arterioles of Patients With Diabetes Mellitus. Circulation Research, 2006, 99, e12-7.	4.5	98
114	Phosphorylation-Dependent Desensitization by Anandamide of Vanilloid Receptor-1 (TRPV1) Function in Rat Skeletal Muscle Arterioles and in Chinese Hamster Ovary Cells Expressing TRPV1. Molecular Pharmacology, 2006, 69, 1015-1023.	2.3	62
115	Lack of flow mediated dilation and enhanced angiotensin II-induced constriction in skeletal muscle arterioles of lupus-prone autoimmune mice. Lupus, 2006, 15, 326-334.	1.6	11
116	High intraluminal pressure reduces tachyphylaxis to angiotensin II in isolated arterioles. FASEB Journal, 2006, 20, A306.	0.5	0
117	PECAM-1 Mediates NO-Dependent Dilation of Arterioles to High Temporal Gradients of Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1590-1595.	2.4	105
118	Type 2 Diabetic Mice Have Increased Arteriolar Tone and Blood Pressure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1610-1616.	2.4	133
119	Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Molecular Brain Research, 2005, 135, 162-168.	2.3	383
120	Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. Journal of Applied Physiology, 2004, 97, 1130-1137.	2.5	65
121	PPARÎ ³ activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H742-H748.	3.2	155
122	Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH4. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H626-H633.	3.2	45
123	Ghrelin induces vasoconstriction in the rat coronary vasculature without altering cardiac peptide secretion. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1522-H1529.	3.2	52
124	Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2461-H2467.	3.2	41
125	Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1404-H1410.	3.2	106
126	Chronic Renal Failure Leads to Reduced Flow-Dependent Dilation in Isolated Rat Skeletal Muscle Arterioles due to Lack of NO Mediation. Kidney and Blood Pressure Research, 2003, 26, 19-26.	2.0	10

#	ARTICLE	IF	CITATION
127	Lack of Nitric Oxide Mediation of Flow-Dependent Arteriolar Dilation in Type I Diabetes Is Restored by Sepiapterin. Journal of Vascular Research, 2003, 40, 47-57.	1.4	70
128	Oxidative stress-induced dysregulation of arteriolar wall shear stress and blood pressure in hyperhomocysteinemia is prevented by chronic vitamin C treatment. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2277-H2283.	3.2	47
129	Xanthine Oxidase–Derived Reactive Oxygen Species Convert Flow-Induced Arteriolar Dilation to Constriction in Hyperhomocysteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 28-33.	2.4	61
130	New Trends in the Development of Oral Antidiabetic Drugs. Current Medicinal Chemistry, 2002, 9, 53-71.	2.4	46
131	On the role of mechanosensitive mechanisms eliciting reactive hyperemia. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2250-H2259.	3.2	74
132	Impaired Nitric Oxide-Mediated Flow-Induced Coronary Dilation in Hyperhomocysteinemia. American Journal of Pathology, 2002, 161, 145-153.	3.8	58
133	Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 350-356.	3.0	28
134	Flow-Induced Constriction in Arterioles of Hyperhomocysteinemic Rats Is Due to Impaired Nitric Oxide and Enhanced Thromboxane A ₂ Mediation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 233-237.	2.4	35
135	Cardiac electrophysiological effects of citalopram in guinea pig papillary muscle Comparison with clomipramine. General Pharmacology, 2000, 34, 17-23.	0.7	22
136	Simultaneously Increased TxA ₂ Activity in Isolated Arterioles and Platelets of Rats With Hyperhomocysteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1203-1208.	2.4	53