Andrew T Delariva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799213/publications.pdf

Version: 2024-02-01

32 papers 6,046 citations

331670 21 h-index 501196 28 g-index

33 all docs 33 docs citations

33 times ranked 7319 citing authors

#	Article	IF	CITATIONS
1	Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353, 150-154.	12.6	1,487
2	Activation of surface lattice oxygen in single-atom Pt/CeO ₂ for low-temperature CO oxidation. Science, 2017, 358, 1419-1423.	12.6	1,114
3	Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?. Accounts of Chemical Research, 2013, 46, 1720-1730.	15.6	970
4	Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nature Communications, 2014, 5, 4885.	12.8	498
5	Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 2019, 10, 1358.	12.8	302
6	Relating Rates of Catalyst Sintering to the Disappearance of Individual Nanoparticles during Ostwald Ripening. Journal of the American Chemical Society, 2011, 133, 20672-20675.	13.7	250
7	Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 2019, 9, 3978-3990.	11.2	233
8	CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Applied Catalysis B: Environmental, 2019, 243, 36-46.	20.2	231
9	Atomically Dispersed Pd–O Species on CeO ₂ (111) as Highly Active Sites for Low-Temperature CO Oxidation. ACS Catalysis, 2017, 7, 6887-6891.	11.2	208
10	Xâ€ray Absorption Spectroscopy of Bimetallic Pt–Re Catalysts for Hydrogenolysis of Glycerol to Propanediols. ChemCatChem, 2010, 2, 1107-1114.	3.7	134
11	In situ Transmission Electron Microscopy of catalyst sintering. Journal of Catalysis, 2013, 308, 291-305.	6.2	106
12	Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2089-2093.	4.6	77
13	In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on \hat{I}^3 -Al2O3: pretreatment and environmental effects. Physical Chemistry Chemical Physics, 2012, 14, 11457.	2.8	60
14	The CO oxidation mechanism and reactivity on PdZn alloys. Physical Chemistry Chemical Physics, 2013, 15, 7768.	2.8	55
15	Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Applied Catalysis B: Environmental, 2017, 218, 581-590.	20.2	50
16	Catalytic reactivity of face centered cubic $PdZn\hat{l}\pm$ for the steam reforming of methanol. Journal of Catalysis, 2012, 291, 44-54.	6.2	46
17	Atomically Dispersed Dopants for Stabilizing Ceria Surface Area. Applied Catalysis B: Environmental, 2021, 284, 119722.	20.2	37
18	Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap. Journal of Physical Chemistry C, 2010, 114, 17181-17190.	3.1	33

#	Article	IF	CITATIONS
19	A High Entropy Oxide Designed to Catalyze CO Oxidation Without Precious Metals. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8120-8128.	8.0	30
20	Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts. Applied Catalysis B: Environmental, 2020, 266, 118598.	20.2	27
21	Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts. Catalysis Science and Technology, 2015, 5, 254-263.	4.1	24
22	Environmentally benign synthesis of a PGM-free catalyst for low temperature CO oxidation. Applied Catalysis B: Environmental, 2020, 264, 118547.	20.2	20
23	Achieving high ethylene yield in non-oxidative ethane dehydrogenation. Applied Catalysis A: General, 2021, 624, 118309.	4.3	15
24	Synthesis of sub-2 nm ceria crystallites in carbon matrixes by simple pyrolysis of ion-exchange resins. Journal of Materials Chemistry, 2011, 21, 7418.	6.7	12
25	Designing Ceria/Alumina for Efficient Trapping of Platinum Single Atoms. ACS Sustainable Chemistry and Engineering, 2022, 10, 7603-7612.	6.7	9
26	Atomically Dispersed Tin-Modified \hat{l}^3 -alumina for Selective Propane Dehydrogenation under H ₂ S Co-feed. ACS Catalysis, 2021, 11, 13472-13482.	11.2	8
27	Designing Catalysts for Meeting the DOE 150 °C Challenge for Exhaust Emissions. Microscopy and Microanalysis, 2017, 23, 2028-2029.	0.4	4
28	Restricting the growth of Pt nanoparticles through confinement in ordered nanoporous structures. Applied Catalysis A: General, 2020, 607, 117858.	4.3	4
29	Gas-Phase Hydrogen-Atom Measurement above Catalytic and Noncatalytic Materials during Ethane Dehydrogenation. Journal of Physical Chemistry C, 0, , .	3.1	2
30	Support Effects on Adatom Emission from Nanoparticles. Microscopy and Microanalysis, 2008, 14, 182-183.	0.4	0
31	Nucleation of Platinum on Carbon Blacks. ECS Transactions, 2010, 33, 73-82.	0.5	0
32	Reply to: "Pitfalls in identifying active catalyst species― Nature Communications, 2020, 11, 4574.	12.8	0