Annalisa Aluigi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1799019/publications.pdf Version: 2024-02-01

ANNALISA ALLICI

#	Article	IF	CITATIONS
1	Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. Nanomaterials, 2022, 12, 1406.	1.9	9
2	Cyanine-Doped Nanofiber Mats for Laser Tissue Bonding. Nanomaterials, 2022, 12, 1613.	1.9	1
3	Eco-Sustainable Silk Fibroin/Pomegranate Peel Extract Film as an Innovative Green Material for Skin Repair. International Journal of Molecular Sciences, 2022, 23, 6805.	1.8	1
4	Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. International Journal of Pharmaceutics, 2022, 623, 121888.	2.6	9
5	Magnetic keratin/hydrotalcites sponges as potential scaffolds for tissue regeneration. Applied Clay Science, 2021, 207, 106090.	2.6	15
6	Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications. Biomolecules, 2021, 11, 1194.	1.8	22
7	Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties. Polymer Degradation and Stability, 2020, 182, 109403.	2.7	9
8	Optically activated and interrogated plasmonic hydrogels for applications in wound healing. Journal of Biophotonics, 2020, 13, e202000135.	1.1	15
9	Keratin/Hydrotalcites Hybrid Sponges as Promising Adsorbents for Cationic and Anionic Dyes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 68.	2.0	11
10	Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polymer Degradation and Stability, 2020, 179, 109272.	2.7	25
11	Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Frontiers in Chemistry, 2020, 8, 158.	1.8	6
12	Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets. Graphene Technology, 2020, 5, 49-57.	1.9	5
13	New materials for laser welding of connective tissue and controlled release of antimicrobial principles. , 2020, , .		0
14	Engineering of keratin functionality for the realization of bendable all-biopolymeric micro-electrode array as humidity sensor. Biosensors and Bioelectronics, 2019, 141, 111480.	5.3	17
15	Keratin Film as Natural and Ecoâ€Friendly Support for Organic Optoelectronic Devices. Advanced Sustainable Systems, 2019, 3, 1900080.	2.7	19
16	Unprecedented Behavior of (9 <i>R</i>)-9-Hydroxystearic Acid-Loaded Keratin Nanoparticles on Cancer Cell Cycle. Molecular Pharmaceutics, 2019, 16, 931-942.	2.3	14
17	Polydopamine Nanoparticle-Coated Polysulfone Porous Granules as Adsorbents for Water Remediation. ACS Omega, 2019, 4, 4839-4847.	1.6	25
18	Nano-hybrid electrospun non-woven mats made of wool keratin and hydrotalcites as potential bio-active wound dressings. Nanoscale, 2019, 11, 6422-6430.	2.8	41

Annalisa Aluigi

#	Article	IF	CITATIONS
19	Extraction and Characterization of Keratin from Different Biomasses. Springer Series on Polymer and Composite Materials, 2019, , 35-76.	0.5	18
20	Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Materials Science and Engineering C, 2018, 90, 476-484.	3.8	48
21	Intercalation of Bioactive Molecules into Nanosized ZnAl Hydrotalcites for Combined Chemo and Photo Cancer Treatment. ACS Applied Nano Materials, 2018, 1, 6387-6397.	2.4	8
22	Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. International Journal of Nanomedicine, 2018, Volume 13, 4847-4867.	3.3	33
23	Mild and Effective Polymerization of Dopamine on Keratin Films for Innovative Photoactivable and Biocompatible Coated Materials. Macromolecular Materials and Engineering, 2018, 303, 1700653.	1.7	10
24	Keratin-hydrotalcites hybrid films for drug delivery applications. European Polymer Journal, 2018, 105, 177-185.	2.6	50
25	Electrospinning of immiscible systems: The wool keratin/polyamide-6 case study. Materials and Design, 2017, 127, 144-153.	3.3	37
26	Raman spectroscopic characterisation of photo-active keratin doped with Methylene Blue for wound dressings and tissue engineering. Biomedical Spectroscopy and Imaging, 2016, 5, 207-215.	1.2	3
27	Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Advances, 2016, 6, 33910-33918.	1.7	27
28	Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Materials and Design, 2016, 110, 475-484.	3.3	27
29	Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules, 2016, 17, 2882-2890.	2.6	21
30	A modeling study by artificial neural network on ethidium bromide adsorption optimization using natural pumice and iron-coated pumice. Desalination and Water Treatment, 2016, 57, 13472-13483.	1.0	8
31	Effect of processing techniques on the 3 <scp>D</scp> microstructure of poly (<scp>l</scp> â€kactic) Tj ETQq1 1 Science, 2015, 132, .	0.784314 1.3	4 rgBT /Overlo 14
32	Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering C, 2015, 47, 394-406.	3.8	42
33	Methylene Blue Doped Films of Wool Keratin with Antimicrobial Photodynamic Activity. ACS Applied Materials & Interfaces, 2015, 7, 17416-17424.	4.0	56
34	Removal of Cu(II) ions from water using thermally-treated horn–hoof powder as biosorbent. Desalination and Water Treatment, 2015, 55, 1105-1115.	1.0	3
35	Study of Methylene Blue adsorption on keratin nanofibrous membranes. Journal of Hazardous Materials, 2014, 268, 156-165.	6.5	167
36	Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. Journal of Materials Science, 2014, 49, 6257-6269.	1.7	48

Annalisa Aluigi

#	Article	IF	CITATIONS
37	Photopolymerization of keratin-based thiol-ene coatings. Progress in Organic Coatings, 2014, 77, 1104-1110.	1.9	6
38	Regenerated keratin proteins as potential biomaterial for drug delivery. Polymers for Advanced Technologies, 2013, 24, 1025-1028.	1.6	30
39	Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment. International Journal of Biological Macromolecules, 2013, 57, 30-37.	3.6	57
40	Antibacterial efficacy of polypyrrole in textile applications. Fibers and Polymers, 2013, 14, 36-42.	1.1	82
41	Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Textile Reseach Journal, 2013, 83, 1574-1586.	1.1	56
42	Adhesion enhancement of electrospun nanofiber mats to polypropylene nonwoven fabric by low-temperature oxygen plasma treatment. Surface and Coatings Technology, 2013, 216, 178-184.	2.2	39
43	Study on the Adsorption of Chromium (VI) by Hydrolyzed Keratin/Polyamide 6 Blend Nanofibres. Journal of Nanoscience and Nanotechnology, 2012, 12, 7250-7259.	0.9	29
44	Immunological method for the identification of animal hair fibres. Textile Reseach Journal, 2012, 82, 766-772.	1.1	13
45	Microwave-assisted chemical-free hydrolysis of wool keratin. Textile Reseach Journal, 2012, 82, 2006-2018.	1.1	70
46	Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis. Results in Pharma Sciences, 2012, 2, 72-78.	4.2	27
47	Wool Keratin Nanofibres for Copper(II) Adsorption. Journal of Biobased Materials and Bioenergy, 2012, 6, .	0.1	21
48	Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. European Polymer Journal, 2011, 47, 1756-1764.	2.6	107
49	Bio-Composite Keratin Films from Wool Fibrillation. Journal of Biobased Materials and Bioenergy, 2011, 5, 124-131.	0.1	10
50	Characterisation of keratin biomass from butchery and wool industry wastes. Journal of Molecular Structure, 2009, 938, 35-40.	1.8	136
51	Multifunctional cotton fabrics. Synthetic Metals, 2009, 159, 1082-1089.	2.1	80
52	Wool Keratin-Based Nanofibres for Active Filtration of Air and Water. Journal of Biobased Materials and Bioenergy, 2009, 3, 311-319.	0.1	62
53	Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1193-1201.	2.4	39
54	Structure and properties of keratin/PEO blend nanofibres. European Polymer Journal, 2008, 44, 2465-2475.	2.6	159

ANNALISA ALUIGI

#	Article	IF	CITATIONS
55	Study on Cast Membranes and Electrospun Nanofibers Made from Keratin/Fibroin Blends. Biomacromolecules, 2008, 9, 2819-2825.	2.6	93
56	Composite biomaterials from fibre wastes: Characterization of wool–cellulose acetate blends. Composites Part A: Applied Science and Manufacturing, 2008, 39, 126-132.	3.8	77
57	Electrospinning of polyamide 6/modified-keratin blends. E-Polymers, 2007, 7, .	1.3	17
58	Study on the structure and properties of wool keratin regenerated from formic acid. International Journal of Biological Macromolecules, 2007, 41, 266-273.	3.6	220
59	Electrospun Porous Mats for High Efficiency Filtration. Journal of Industrial Textiles, 2007, 37, 151-162.	1.1	78
60	Electrospinning of keratin/poly(ethylene oxide)blend nanofibers. Journal of Applied Polymer Science, 2007, 104, 863-870.	1.3	126
61	Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. Journal of Thermal Analysis and Calorimetry, 2007, 89, 601-608.	2.0	103
62	Study on the Conversion of Wool Keratin by Steam Explosion. Biomacromolecules, 2006, 7, 3499-3504.	2.6	99
63	FT-IR study of dopant-wool interactions during PPy deposition. Fibers and Polymers, 2006, 7, 105-111.	1.1	28
64	Thermoanalytical characterisation of modified keratin fibres. Journal of Thermal Analysis and Calorimetry, 2004, 77, 987-996.	2.0	25
65	Non-coincidence effect and orientational dynamics in aromatic molecules. Molecular Physics, 2002, 100, 3677-3690.	0.8	9

66 Keratin-based Nanofibres. , 0, , .

15