Raffaele De Francesco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Molecular Therapy, 2022, 30, 311-326.	3.7	54
2	DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacological Research, 2022, 175, 105982.	3.1	18
3	Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Science Immunology, 2022, 7, .	5.6	61
4	Anti-spike antibodies and neutralising antibody activity in people living with HIV vaccinated with COVID-19 mRNA-1273 vaccine: a prospective single-centre cohort study. Lancet Regional Health - Europe, The, 2022, 13, 100287.	3.0	39
5	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	3.3	27
6	Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nature Communications, 2022, 13, .	5.8	20
7	Integrated longitudinal immunophenotypic, transcriptional, and repertoire analyses delineate immune responses in patients with COVID-19. Science Immunology, 2021, 6, .	5.6	108
8	Novel interferon-sensitive genes unveiled by correlation-driven gene selection and systems biology. Scientific Reports, 2021, 11, 18043.	1.6	3
9	Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Science Immunology, 2021, , eabl9929.	5.6	3
10	Nanoparticleâ€Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment. Advanced Therapeutics, 2020, 3, 2000007.	1.6	7
11	Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Scientific Reports, 2019, 9, 3682.	1.6	85
12	The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance?. Trends in Immunology, 2017, 38, 498-512.	2.9	56
13	Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture. Nature Microbiology, 2017, 2, 16247.	5.9	52
14	NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains. PLoS Pathogens, 2017, 13, e1006343.	2.1	12
15	Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein. MSphere, 2016, 1, .	1.3	18
16	DEPDC5 variants increase fibrosis progression in Europeans with chronic hepatitis C virus infection. Hepatology, 2016, 63, 418-427.	3.6	31
17	Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity, 2016, 45, 1135-1147.	6.6	510
18	ILâ€10 promotes homeostatic proliferation of human CD8 ⁺ memory TÂcells and, when produced by CD1c ⁺ DCs, shapes naive CD8 ⁺ Tâ€cell priming. European Journal of Immunology, 2016, 46, 1622-1632.	1.6	45

RAFFAELE DE FRANCESCO

#	Article	IF	CITATIONS
19	The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology, 2015, 16, 318-325.	7.0	300
20	Transmembrane 6 superfamily member 2 gene E167K variant impacts on steatosis and liver damage in chronic hepatitis C patients. Hepatology, 2015, 62, 111-117.	3.6	52
21	Daclatasvir: a team player rather than a prima donna in the treatment of hepatitis C. Gut, 2015, 64, 860-862.	6.1	5
22	Hepatitis C Virus Deletion Mutants Are Found in Individuals Chronically Infected with Genotype 1 Hepatitis C Virus in Association with Age, High Viral Load and Liver Inflammatory Activity. PLoS ONE, 2015, 10, e0138546.	1.1	14
23	The Association of Il28b Genotype with the Histological Features of Chronic Hepatitis C Is HCV Genotype Dependent. International Journal of Molecular Sciences, 2014, 15, 7213-7224.	1.8	19
24	<i>In vitro</i> antibiofilm activity of bioactive glass S53P4. Future Microbiology, 2014, 9, 593-601.	1.0	64
25	Genome-Wide Analysis of DNA Methylation, Copy Number Variation, and Gene Expression in Monozygotic Twins Discordant for Primary Biliary Cirrhosis. Frontiers in Immunology, 2014, 5, 128.	2.2	57
26	Kinetic Analyses Reveal Potent and Early Blockade of Hepatitis C Virus Assembly by NS5A Inhibitors. Gastroenterology, 2014, 147, 453-462.e7.	0.6	104
27	Oxysterol-Binding Protein Is a Phosphatidylinositol 4-Kinase Effector Required for HCV Replication Membrane Integrity and Cholesterol Trafficking. Gastroenterology, 2014, 146, 1373-1385.e11.	0.6	138
28	Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. International Journal of Antimicrobial Agents, 2014, 44, 47-55.	1.1	60
29	Interleukin 28B Genotype and Insulin Resistance in Chronic Hepatitis C Patients. Antiviral Therapy, 2014, 19, 747-753.	0.6	6
30	Interaction between PNPLA3 I148M Variant and Age at Infection in Determining Fibrosis Progression in Chronic Hepatitis C. PLoS ONE, 2014, 9, e106022.	1.1	9
31	Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood, 2013, 122, 932-942.	0.6	300
32	Hepatitis C vaccines. , 2013, , 1074-1084.		0
33	Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. Current Topics in Microbiology and Immunology, 2013, 369, 289-320.	0.7	27
34	New horizons in hepatitis C antiviral therapy with direct-acting antivirals. Hepatology, 2013, 58, 428-438.	3.6	142
35	IL28B polymorphisms predict interferon-related hepatitis B surface antigen seroclearance in genotype D hepatitis B e antigen-negative patients with chronic hepatitis B. Hepatology, 2013, 57, 890-896.	3.6	153
36	Cirrhosis and Rapid Virological Response to Peginterferon Plus Ribavirin Determine Treatment Outcome in HCV-1 IL28B rs12979860 CC Patients. BioMed Research International, 2013, 2013, 1-6.	0.9	3

#	Article	IF	CITATIONS
37	Metabolism of Phosphatidylinositol 4-Kinase IIIα-Dependent PI4P Is Subverted by HCV and Is Targeted by a 4-Anilino Quinazoline with Antiviral Activity. PLoS Pathogens, 2012, 8, e1002576.	2.1	108
38	Identification of New Autoantigens by Protein Array Indicates a Role for IL4 Neutralization in Autoimmune Hepatitis. Molecular and Cellular Proteomics, 2012, 11, 1885-1897.	2.5	38
39	Interleukin 28B polymorphism predicts pegylated interferon plus ribavirin treatment outcome in chronic hepatitis C genotype 4. Hepatology, 2012, 55, 336-342.	3.6	81
40	Discovery of (7 <i>R</i>)-14-Cyclohexyl-7-{[2-(dimethylamino)ethyl](methyl) amino}-7,8-dihydro-6 <i>H</i> -indolo[1,2- <i>e</i>][1,5]benzoxazocine-11-carboxylic Acid (MK-3281), a Potent and Orally Bioavailable Finger-Loop Inhibitor of the Hepatitis C Virus NS5B Polymerase. Journal of Medicinal Chemistry, 2011, 54, 289-301.	2.9	63
41	Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nature Immunology, 2011, 12, 796-803.	7.0	222
42	Genetic variation in the <i>interleukin</i> - <i>28B</i> gene is not associated with fibrosis progression in patients with chronic hepatitis C and known date of infection. Hepatology, 2011, 54, 1127-1134.	3.6	115
43	Mechanism of Hepatitis C Virus RNA Polymerase Inhibition with Dihydroxypyrimidines. Antimicrobial Agents and Chemotherapy, 2010, 54, 977-983.	1.4	26
44	Structural and Biochemical Characterization of the Wild Type PCSK9-EGF(AB) Complex and Natural Familial Hypercholesterolemia Mutants. Journal of Biological Chemistry, 2009, 284, 1313-1323.	1.6	112
45	Naturally Occurring Hepatitis C Virus Subgenomic Deletion Mutants Replicate Efficiently in Huh-7 Cells and Are <i>trans</i> -Packaged In Vitro To Generate Infectious Defective Particles. Journal of Virology, 2009, 83, 9079-9093.	1.5	36
46	Loss of Histone Deacetylase 4 Causes Segregation Defects during Mitosis of p53-Deficient Human Tumor Cells. Cancer Research, 2009, 69, 6074-6082.	0.4	36
47	Synthesis and SAR of piperazinyl-N-phenylbenzamides as inhibitors of hepatitis C virus RNA replication in cell culture. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1779-1783.	1.0	35
48	Binding of a Noncovalent Inhibitor Exploiting the S′ region Stabilizes the Hepatitis C virus NS3 Protease Conformation in the Absence of Cofactor. Journal of Molecular Biology, 2009, 385, 1142-1155.	2.0	11
49	Structural Basis for Resistance of the Genotype 2b Hepatitis C Virus NS5B Polymerase to Site A Non-Nucleoside Inhibitors. Journal of Molecular Biology, 2009, 390, 1048-1059.	2.0	16
50	Identification and Biological Evaluation of a Series of 1 <i>H</i> -Benzo[<i>de</i>]isoquinoline-1,3(2 <i>H</i>)-diones as Hepatitis C Virus NS5B Polymerase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5217-5227.	2.9	42
51	Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1814-1819.	1.0	91
52	Development and optimization of a binding assay for histone deacetylase 4 using surface plasmon resonance. Analytical Biochemistry, 2008, 377, 267-269.	1.1	5
53	Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 334-344.	1.9	64
54	A Novel Series of Potent and Selective Ketone Histone Deacetylase Inhibitors with Antitumor Activity in Vivo. Journal of Medicinal Chemistry, 2008, 51, 2350-2353.	2.9	56

#	Article	IF	CITATIONS
55	Structural and Functional Analysis of the Human HDAC4 Catalytic Domain Reveals a Regulatory Structural Zinc-binding Domain. Journal of Biological Chemistry, 2008, 283, 26694-26704.	1.6	259
56	Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovascular Research, 2008, 80, 416-424.	1.8	147
57	Hepatitis C Virus NS5A Is a Direct Substrate of Casein Kinase I-α, a Cellular Kinase Identified by Inhibitor Affinity Chromatography Using Specific NS5A Hyperphosphorylation Inhibitors. Journal of Biological Chemistry, 2007, 282, 5536-5544.	1.6	76
58	Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation. Journal of Biological Chemistry, 2007, 282, 20502-20512.	1.6	166
59	Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8–substrate complex. EMBO Reports, 2007, 8, 879-884.	2.0	230
60	Phosphorylation of hepatitis C virus NS5A nonstructural protein: A new paradigm for phosphorylation-dependent viral RNA replication?. Virology, 2007, 364, 1-9.	1.1	144
61	Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Advanced Drug Delivery Reviews, 2007, 59, 1242-1262.	6.6	128
62	2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as Inhibitors of the Hepatitis C Virus NS5B Polymerase:Â Discovery, SAR, Modeling, and Mutagenesis. Journal of Medicinal Chemistry, 2006, 49, 1693-1705.	2.9	90
63	A Structure-Guided Approach to an Orthogonal Estrogen-Receptor-Based Gene Switch Activated by Ligands Suitable for in Vivo Studies. Journal of Medicinal Chemistry, 2006, 49, 5404-5407.	2.9	19
64	A series of novel, potent, and selective histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5948-5952.	1.0	68
65	The α Isoform of Protein Kinase CKI Is Responsible for Hepatitis C Virus NS5A Hyperphosphorylation. Journal of Virology, 2006, 80, 11305-11312.	1.5	71
66	Review HCV Antiviral Resistance: The Impact of <i>in vitro</i> Studies on the Development of Antiviral Agents Targeting the Viral NS5B Polymerase. Antiviral Chemistry and Chemotherapy, 2005, 16, 225-245.	0.3	55
67	A Functionally Orthogonal Estrogen Receptor-Based Transcription Switch Specifically Induced by a Nonsteroid Synthetic Ligand. Chemistry and Biology, 2005, 12, 883-893.	6.2	18
68	Challenges and successes in developing new therapies for hepatitis C. Nature, 2005, 436, 953-960.	13.7	404
69	Interdomain Communication in Hepatitis C Virus Polymerase Abolished by Small Molecule Inhibitors Bound to a Novel Allosteric Site. Journal of Biological Chemistry, 2005, 280, 29765-29770.	1.6	152
70	Development and Preliminary Optimization of Indole-N-Acetamide Inhibitors of Hepatitis C Virus NS5B Polymerase. Journal of Medicinal Chemistry, 2005, 48, 1314-1317.	2.9	93
71	Potent Inhibitors of Subgenomic Hepatitis C Virus RNA Replication through Optimization of Indole-N-Acetamide Allosteric Inhibitors of the Viral NS5B Polymerase. Journal of Medicinal Chemistry, 2005, 48, 4547-4557.	2.9	102
72	Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15064-15069.	3.3	573

RAFFAELE DE FRANCESCO

#	Article	IF	CITATIONS
73	Reduction of Hepatitis C Virus NS5A Hyperphosphorylation by Selective Inhibition of Cellular Kinases Activates Viral RNA Replication in Cell Culture. Journal of Virology, 2004, 78, 13306-13314.	1.5	128
74	Characterization of the Inhibition of Hepatitis C Virus RNA Replication by Nonnucleosides. Journal of Virology, 2004, 78, 938-946.	1.5	128
75	The monoethyl ester of meconic acid is an active site inhibitor of HCV NS5B RNA-dependent RNA polymerase. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3257-3261.	1.0	56
76	HCV NS5b RNA-Dependent RNA Polymerase Inhibitors:  From α,γ-Diketoacids to 4,5-Dihydroxypyrimidine- or 3-Methyl-5- hydroxypyrimidinonecarboxylic Acids. Design and Synthesis. Journal of Medicinal Chemistry, 2004, 47, 5336-5339.	2.9	103
77	Discovery of α,γ-Diketo Acids as Potent Selective and Reversible Inhibitors of Hepatitis C Virus NS5b RNA-Dependent RNA Polymerase. Journal of Medicinal Chemistry, 2004, 47, 14-17.	2.9	139
78	Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Research, 2003, 58, 1-16.	1.9	187
79	A novel, inducible, eukaryotic gene expression system based on the quorumâ€sensing transcription factor TraR. EMBO Reports, 2003, 4, 159-165.	2.0	68
80	The 37 kDa/67 kDa laminin receptor is required for PrPSc propagation in scrapieâ€infected neuronal cells. EMBO Reports, 2003, 4, 439-439.	2.0	2
81	New therapies on the horizon for hepatitis C. Clinics in Liver Disease, 2003, 7, 211-242.	1.0	37
82	Phenethyl Amides as Novel Noncovalent Inhibitors of Hepatitis C Virus NS3/4A Protease:  Discovery, Initial SAR, and Molecular Modeling. Journal of Medicinal Chemistry, 2003, 46, 345-348.	2.9	37
83	Inhibition of Hepatitis C Virus RNA Replication by 2′-Modified Nucleoside Analogs. Journal of Biological Chemistry, 2003, 278, 11979-11984.	1.6	314
84	Mechanismof Action and Antiviral Activity of Benzimidazole-Based AllostericInhibitors of the Hepatitis C Virus RNA-Dependent RNAPolymerase. Journal of Virology, 2003, 77, 13225-13231.	1.5	198
85	In Vitro Selection and Characterization of Hepatitis C Virus Serine Protease Variants Resistant to an Active-Site Peptide Inhibitor. Journal of Virology, 2003, 77, 3669-3679.	1.5	120
86	Characterization of Resistance to Non-obligate Chain-terminating Ribonucleoside Analogs That Inhibit Hepatitis C Virus Replication in Vitro. Journal of Biological Chemistry, 2003, 278, 49164-49170.	1.6	305
87	Structural Analysis of the Hepatitis C Virus RNA Polymerase in Complex with Ribonucleotides. Journal of Virology, 2002, 76, 3482-3492.	1.5	338
88	Selection of RNA Aptamers That Are Specific and High-Affinity Ligands of the Hepatitis C Virus RNA-Dependent RNA Polymerase. Journal of Virology, 2002, 76, 3688-3696.	1.5	91
89	A designed P1 cysteine mimetic for covalent and non-covalent inhibitors of HCV NS3 protease. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 701-704.	1.0	167
90	Crystallization and preliminary X-ray diffraction studies of the transcriptional regulator TraR bound to its cofactor and to a specific DNA sequence. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1362-1364.	2.5	4

#	Article	IF	CITATIONS
91	A scintillation proximity active site binding assay for the hepatitis C virus serine protease. Analytical Biochemistry, 2002, 307, 99-104.	1.1	4
92	The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO Journal, 2002, 21, 4393-4401.	3.5	306
93	Measurement of homonuclear three-bond J(H(N)Halpha) coupling constants in unlabeled peptides complexed with labeled proteins: application to a decapeptide inhibitor bound to the proteinase domain of the NS3 protein of hepatitis C virus (HCV). Journal of Biomolecular NMR, 2001, 20, 23-29.	1.6	1
94	Probing the Active Site of the Hepatitis C Virus Serine Protease by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2000, 275, 15106-15113.	1.6	18
95	Inhibition of the Hepatitis C Virus NS3/4A Protease. Journal of Biological Chemistry, 2000, 275, 7152-7157.	1.6	116
96	Biochemical and Immunologic Properties of the Nonstructural Proteins of the Hepatitis C Virus: Implications for Development of Antiviral Agents and Vaccines. Seminars in Liver Disease, 2000, Volume 20, 0069-0084.	1.8	28
97	α-Ketoacids Are Potent Slow Binding Inhibitors of the Hepatitis C Virus NS3 Protease. Biochemistry, 2000, 39, 1849-1861.	1.2	77
98	Biochemical characterization of a hepatitis C virus RNA-dependent RNA polymerase mutant lacking the C-terminal hydrophobic sequence. Journal of General Virology, 2000, 81, 759-767.	1.3	71
99	Enzymatic properties of hepatitis C virus NS3-associated helicase. Microbiology (United Kingdom), 2000, 81, 1335-1345.	0.7	32
100	Mutational analysis of hepatitis C virus NS3-associated helicase. Microbiology (United Kingdom), 2000, 81, 1649-1658.	0.7	20
101	Conformational changes in the NS3 protease from hepatitis C virus strain Bk monitored by limited proteolysis and mass spectrometry. Protein Science, 1999, 8, 1445-1454.	3.1	23
102	A High-Throughput Radiometric Assay for Hepatitis C Virus NS3 Protease. Analytical Biochemistry, 1999, 266, 192-197.	1.1	17
103	Molecular virology of the hepatitis C virus. Journal of Hepatology, 1999, 31, 47-53.	1.8	106
104	Modulation of Hepatitis C Virus NS3 Protease and Helicase Activities through the Interaction with NS4A. Biochemistry, 1999, 38, 5620-5632.	1.2	64
105	Multiple Determinants Influence Complex Formation of the Hepatitis C Virus NS3 Protease Domain with Its NS4A Cofactor Peptide. Biochemistry, 1999, 38, 5206-5215.	1.2	31
106	The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism. Journal of Molecular Biology, 1999, 289, 371-384.	2.0	111
107	Structural characterization of the interactions of optimized product inhibitors with the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein by NMR and modelling studies. Journal of Molecular Biology, 1999, 289, 385-396.	2.0	63

108 Proteases of the Hepatitis C Virus. , 1999, , 61-91.

#	Article	IF	CITATIONS
109	Hyperphosphorylation of the Hepatitis C Virus NS5A Protein Requires an Active NS3 Protease, NS4A, NS4B, and NS5A Encoded on the Same Polyprotein. Journal of Virology, 1999, 73, 9984-9991.	1.5	112
110	Rational design and functional expression of a constitutively active single-chain NS4A–NS3 proteinase. Folding & Design, 1998, 3, 433-441.	4.5	14
111	Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: A 2.2 Ã resolution structure in a hexagonal crystal form. Protein Science, 1998, 7, 837-847.	3.1	235
112	Product Inhibition of the Hepatitis C Virus NS3 Protease. Biochemistry, 1998, 37, 8899-8905.	1.2	229
113	Design of Selective Eglin Inhibitors of HCV NS3 Proteinase. Biochemistry, 1998, 37, 11459-11468.	1.2	29
114	Potent Peptide Inhibitors of Human Hepatitis C Virus NS3 Protease Are Obtained by Optimizing the Cleavage Products. Biochemistry, 1998, 37, 8906-8914.	1.2	174
115	The Metal Binding Site of the Hepatitis C Virus NS3 Protease. Journal of Biological Chemistry, 1998, 273, 18760-18769.	1.6	60
116	Multiple Enzymatic Activities Associated with Recombinant NS3 Protein of Hepatitis C Virus. Journal of Virology, 1998, 72, 6758-6769.	1.5	178
117	The Hepatitis C Virus NS3 Proteinase: Structure and Function of a Zinc-Containing Serine Proteinase. Antiviral Therapy, 1998, 3, 99-109.	0.6	30
118	Complex Formation between the Hepatitis C Virus Serine Protease and A Synthetic NS4A Cofactor Peptide. Biochemistry, 1997, 36, 7890-7897.	1.2	65
119	Substrate Specificity of the Hepatitis C Virus Serine Protease NS3. Journal of Biological Chemistry, 1997, 272, 9204-9209.	1.6	109
120	A Zinc Binding Site in Viral Serine Proteinases. Biochemistry, 1996, 35, 13282-13287.	1.2	103
121	Redesigning the substrate specificity of the hepatitis C virus NS3 protease. Folding & Design, 1996, 1, 35-42.	4.5	26
122	Synthetic Depsipeptide Substrates for the Assay of Human Hepatitis C Virus Protease. Analytical Biochemistry, 1996, 237, 239-244.	1.1	38
123	A Continuous Assay of Hepatitis C Virus Protease Based on Resonance Energy Transfer Depsipeptide Substrates. Analytical Biochemistry, 1996, 240, 60-67.	1.1	125
124	In Vitro Activity of Hepatitis C Virus Protease NS3 Purified from Recombinant Baculovirus-infected Sf9 Cells. Journal of Biological Chemistry, 1996, 271, 6367-6373.	1.6	81
125	[4] RNA-dependent RNA polymerase of hepatitis C virus. Methods in Enzymology, 1996, 275, 58-67.	0.4	68
126	LFB1/HNF1 acts as a repressor of its own transcription. Nucleic Acids Research, 1994, 22, 4284-4290.	6.5	12

RAFFAELE DE FRANCESCO

#	Article	IF	CITATIONS
127	Kinetic Studies on the Electron-Transfer Reaction between Cytochrome c3 and Flavodoxin from Desulfovibrio vulgaris Strain Hildenborough. Biochemistry, 1994, 33, 10386-10392.	1.2	8
128	The dimerization domain of LFB1/HNF1 related transcription factors: a hidden four helix bundle?. Protein Engineering, Design and Selection, 1992, 5, 749-757.	1.0	14
129	Proton resonance assignment and secondary structure determination of the dimerization domain of transcription factor LFB1. Biochemistry, 1991, 30, 148-153.	1.2	26
130	Circular dichroism study on the conformational stability of the dimerization domain of transcription factor LFB1. Biochemistry, 1991, 30, 143-147.	1.2	75
131	A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell, 1990, 61, 1225-1236.	13.5	181
132	pKa values of the 8α-imidazole substituents in selected flavoenzymes containing 8α-histidylflavins. Archives of Biochemistry and Biophysics, 1988, 264, 281-287.	1.4	5
133	Influence of 8.alphaimidazole substitution of the FMN cofactor on the rate of electron transfer from the neutral semiquinones of two flavodoxins to cytochrome c. Biochemistry, 1987, 26, 5036-5042.	1.2	10
134	Flavodoxin-cytochrome c interactions: circular dichroism and nuclear magnetic resonance studies. Biochemistry, 1987, 26, 5042-5048.	1.2	19
135	Immunosuppressant Treatment in Rheumatic Musculoskeletal Diseases Does Not Inhibit Elicitation of Humoral Response to SARS-CoV-2 Infection and Preserves Effector Immune Cell Populations. Frontiers in Immunology, 0, 13, .	2.2	0