Changchun Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of the Germinal Center Response by MicroRNA-155. Science, 2007, 316, 604-608.	12.6	1,393
2	Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 2008, 9, 405-414.	14.5	1,173
3	MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb. Cell, 2007, 131, 146-159.	28.9	965
4	MicroRNA Control in the Immune System: Basic Principles. Cell, 2009, 136, 26-36.	28.9	958
5	MicroRNA profiling of the murine hematopoietic system. Genome Biology, 2005, 6, R71.	9.6	388
6	PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity, 2019, 51, 1059-1073.e9.	14.3	229
7	MicroRNAs of the miR-17â^¼92 family are critical regulators of TFH differentiation. Nature Immunology, 2013, 14, 849-857.	14.5	162
8	The MicroRNA-183-96-182 Cluster Promotes T Helper 17 Cell Pathogenicity by Negatively Regulating Transcription Factor Foxo1 Expression. Immunity, 2016, 44, 1284-1298.	14.3	145
9	The <i>miR-17-92</i> Cluster of MicroRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence. Cancer Research, 2010, 70, 8547-8557.	0.9	144
10	Transfection of microRNA Mimics Should Be Used with Caution. Frontiers in Genetics, 2015, 6, 340.	2.3	144
11	SIRT1 deacetylates RORÎ ³ t and enhances Th17 cell generation. Journal of Experimental Medicine, 2015, 212, 607-617.	8.5	126
12	MicroRNA-17â^¼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO Journal, 2013, 32, 2377-2391.	7.8	123
13	The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nature Immunology, 2016, 17, 433-440.	14.5	123
14	The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nature Immunology, 2014, 15, 667-675.	14.5	107
15	A miR-155–Peli1–c-Rel pathway controls the generation and function of T follicular helper cells. Journal of Experimental Medicine, 2016, 213, 1901-1919.	8.5	78
16	MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Letters, 2016, 376, 293-302.	7.2	66
17	Regulation of B-cell development and tolerance by different members of the miR-17â^¼92 family microRNAs. Nature Communications, 2016, 7, 12207.	12.8	65
18	CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. Journal of Experimental Medicine, 2015, 212, 1283-1301.	8.5	56

CHANGCHUN XIAO

#	Article	IF	CITATIONS
19	miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. Journal of Investigative Dermatology, 2021, 141, 659-671.	0.7	46
20	IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection. Journal of Experimental Medicine, 2019, 216, 1791-1808.	8.5	45
21	miR-17â^¼92 family clusters control iNKT cell ontogenesis via modulation of TGF-β signaling. Proceedings of the United States of America, 2016, 113, E8286-E8295.	7.1	44
22	hCD2-iCre and Vav-iCre Mediated Gene Recombination Patterns in Murine Hematopoietic Cells. PLoS ONE, 2015, 10, e0124661.	2.5	43
23	An InÂVivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response. Cell Reports, 2012, 2, 1048-1060.	6.4	42
24	miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene, 2018, 37, 5618-5632.	5.9	38
25	MicroRNA Mechanisms of Action: What have We Learned from Mice?. Frontiers in Genetics, 2015, 6, 328.	2.3	32
26	Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genetics, 2017, 13, e1006623.	3.5	31
27	Ascorbic Acid Promotes Plasma Cell Differentiation through Enhancing TET2/3-Mediated DNA Demethylation. Cell Reports, 2020, 33, 108452.	6.4	23
28	MicroRNA control of B cell tolerance, autoimmunity and cancer. Seminars in Cancer Biology, 2020, 64, 102-107.	9.6	23
29	Endothelial Scaffolding Protein ENH (Enigma Homolog Protein) Promotes PHLPP2 (Pleckstrin) Tj ETQq1 1 0.784 and eNOS (Endothelial NO Synthase) Promoting Vascular Remodeling. Arteriosclerosis, Thrombosis,	314 rgBT / 2.4	Overlock 10 22
30	Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109.	6.4	21
31	A critical role of periostin in B-cell acute lymphoblastic leukemia. Leukemia, 2017, 31, 1835-1837.	7.2	20
32	Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies. Leukemia, 2019, 33, 2315-2319.	7.2	17
33	Mitochondrial C1qbp promotes differentiation of effector CD8 ⁺ T cells via metabolic-epigenetic reprogramming. Science Advances, 2021, 7, eabk0490.	10.3	16
34	microRNA-17~92 is a powerful cancer driver and a therapeutic target. Cell Cycle, 2014, 13, 495-496.	2.6	14
35	Functional interactions among members of the miR-17–92 cluster in lymphocyte development, differentiation and malignant transformation. International Immunopharmacology, 2015, 28, 854-858.	3.8	13
36	IFNAR1 signaling in NK cells promotes persistent virus infection. Science Advances, 2021, 7, .	10.3	10

CHANGCHUN XIAO

#	Article	IF	CITATIONS
37	Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Reports, 2022, 38, 110512.	6.4	10
38	Activation of p38α in T Cells Regulates the Intestinal Host Defense against Attaching and Effacing Bacterial Infections. Journal of Immunology, 2013, 191, 2764-2770.	0.8	9
39	An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome. Methods in Molecular Biology, 2018, 1712, 1-18.	0.9	9
40	MicroRNA says no to mass production. Nature Immunology, 2018, 19, 1040-1042.	14.5	7
41	CSK3 Restrains Germinal Center B Cells to Form Plasma Cells. Journal of Immunology, 2021, 206, 481-493.	0.8	7
42	An In Vivo Functional Screen Identifies miRNA-150 As a Regulator of Hematopoietic Regeneration Post Chemotherapeutic Injury. Blood, 2011, 118, 2333-2333.	1.4	6
43	Clycogen synthase kinase 3 drives thymocyte egress by suppressing β-catenin activation of Akt. Science Advances, 2021, 7, eabg6262.	10.3	5
44	Concurrent PI3K and NF-κB activation drives B-cell lymphomagenesis. Leukemia, 2016, 30, 2267-2270.	7.2	4
45	Prediabetes Induced by a Single Autoimmune B Cell Clone. Frontiers in Immunology, 2020, 11, 1073.	4.8	3
46	Analysis of a miR-148a Targetome in B Cell Central Tolerance. Frontiers in Immunology, 2022, 13, .	4.8	3
47	A Carrier Strategy for Mass Cytometry Analysis of Small Numbers of Cells. Methods in Molecular Biology, 2020, 2111, 21-33.	0.9	2