Francis Dujardin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798735/publications.pdf

Version: 2024-02-01

123	1,768	24 h-index	32
papers	citations		g-index
123	123	123	536
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Optical and magneto-optical absorption of negatively charged excitons in three- and two-dimensional semiconductors. Physical Review B, 1998, 58, 9926-9932.	3.2	75
2	Hysteresis loops and susceptibility of a transverse Ising nanowire. Journal of Magnetism and Magnetic Materials, 2012, 324, 2434-2441.	2.3	70
3	Excitonic trionXâ^'in semiconductor quantum wells. Physical Review B, 1997, 56, 12454-12461.	3.2	68
4	Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Optics Communications, 2017, 383, 231-237.	2.1	53
5	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si37.gif" overflow="scroll"> <mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mspin-<mml:math altimg="si38.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:mfrac></mml:mrow></mspin-<mml:math></mml:mrow></mml:mfrac></mml:mrow>	0.1	40
6	Superlattices and Microstructures, 2014, 75, 761-774. Magnetic properties of a transverse spin-12Ising film. Physical Review B, 1999, 59, 6908-6918.	3.2	39
7	Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot. Applied Surface Science, 2018, 441, 204-209.	6.1	37
8	Magneto-bound polaron in CdSe spherical quantum dots: strong coupling approach. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25, 366-373.	2.7	36
9	Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot. Physica B: Condensed Matter, 2017, 524, 64-70.	2.7	35
10	Exciton bound to an ionized donor impurity in semiconductor spherical quantum dots. Physical Review B, 1996, 54, 17785-17793.	3.2	32
11	Hysteresis loops and dielectric properties of a mixed spin Blume–Capel Ising ferroelectric nanowire. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 499-506.	2.6	32
12	Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites. Physical Review B, 2003, 68, .	3.2	31
13	Electric Field Effect on the Energy of an Off-Centre Donor in Quantum Crystallites. Physica Scripta, 2001, 63, 329-335.	2.5	30
14	Phase diagrams of diluted transverse Ising nanowire. Journal of Magnetism and Magnetic Materials, 2013, 336, 75-82.	2.3	30
15	Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot. Journal of Applied Physics, 2017, 121, .	2.5	30
16	Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk. Journal of Applied Physics, 2012, 111, .	2.5	28
17	The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. Superlattices and Microstructures, 2014, 73, 121-135.	3.1	28
18	Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects. Physica B: Condensed Matter, 2014, 449, 261-268.	2.7	28

#	Article	IF	Citations
19	Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. European Physical Journal B, 2010, 74, 507-516.	1.5	27
20	Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field. Superlattices and Microstructures, 2015, 85, 581-591.	3.1	27
21	Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field. Philosophical Magazine, 2017, 97, 1445-1463.	1.6	27
22	Magnetic Field Influence on the Polarisability of Donors in Quantum Crystallites. Physica Scripta, 2000, 62, 88-91.	2.5	25
23	Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 15, 99-106.	2.7	24
24	On the anomalous Stark effect in a thin disc-shaped quantum dot. Journal of Physics Condensed Matter, 2010, 22, 375301.	1.8	24
25	Phase diagrams of the site-diluted spin-12Ising superlattice. Physical Review B, 1999, 60, 4149-4157.	3.2	23
26	Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. Journal of Applied Physics, 2015, 117, .	2.5	23
27	The order parameters of a spin-1 Ising film in a transverse field. Journal of Physics Condensed Matter, 1999, 11, 2087-2102.	1.8	22
28	Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 303-309.	2.7	21
29	Monte Carlo simulation of dielectric properties of a mixed spin-3/2 and spin-5/2 Ising ferrielectric nanowires. Ferroelectrics, 2017, 507, 58-68.	0.6	21
30	Landau levels of two-dimensional negatively charged three-particle Coulomb states. Journal of Physics Condensed Matter, 1996, 8, 5383-5392.	1.8	20
31	Spatial separation effect on the energies of uncorrelated and correlated electron-hole pair in CdSe/ZnS and InAs/InP core/shell spherical quantum dots. Superlattices and Microstructures, 2017, 109, 123-133.	3.1	20
32	Energy spectrum of an exciton in a CdSe/ZnTe type-II core/shell spherical quantum dot. Superlattices and Microstructures, 2017, 101, 40-48.	3.1	20
33	Theoretical comparative study of negatively and positively charged excitons inGaAs/Ga1â°'xAlxAssemiconductor quantum wells. Physical Review B, 2000, 61, 7231-7232.	3.2	19
34	Electric field effect on the photoionization cross section of a single dopant in a strained AlAs/GaAs spherical core/shell quantum dot. Journal of Applied Physics, 2018, 124, .	2.5	19
35	Wetting layer and size effects on the nonlinear optical properties of semi oblate and prolate Si0.7Ge0.3/Si quantum dots. Current Applied Physics, 2021, 25, 1-11.	2.4	19
36	Magnetic Properties of Diluted Magnetic Nanowire. Journal of Superconductivity and Novel Magnetism, 2013, 26, 201-211.	1.8	17

#	Article	IF	Citations
37	Shallow donor inside core/shell spherical nanodot: Effect of nanostructure size and dielectric environment on energy spectrum. Superlattices and Microstructures, 2017, 111, 976-982.	3.1	17
38	The transverse spin-1 Ising film. Journal of Physics Condensed Matter, 2000, 12, 43-53.	1.8	16
39	Photovoltaic conversion efficiency of $InN/In \times Ga\ 1-x \ N$ quantum dot intermediate band solar cells. Physica B: Condensed Matter, 2018, 534, 10-16.	2.7	16
40	Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	16
41	Internal polarization electric field effects on the efficiency of InIV/In <mml:math altimg="si54.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>6.1 nml:mtext></td><td>16 ∙</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	6.1 nml:mtext>	16 ∙
42	Pyroelectric, dielectric properties and hysteresis loops of a ferroelectric bilayer system described by the transverse Ising model with long-range interactions. Physica Scripta, 2012, 86, 045704.	2.5	15
43	Lateral induced dipole moment and polarizability of excitons in a ZnO single quantum disk. Journal of Applied Physics, 2013, 113, 064314.	2.5	15
44	Stark-shift of impurity fundamental state in a lens shaped quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 119-123.	2.7	15
45	Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	15
46	The ferromagnet spin- $1/2$ Ising superlattice in a transverse field. Physica A: Statistical Mechanics and Its Applications, 1999, 269, 322-328.	2.6	14
47	Excitonic binding energy in prolate and oblate spheroidal quantum dots. Superlattices and Microstructures, 2018, 114, 296-304.	3.1	14
48	Electronic and optical properties of layered van der Waals heterostructure based on MS ₂ (M = Mo, W) monolayers. Materials Research Express, 2019, 6, 065060.	1.6	13
49	Linear and nonlinear optical properties of a single dopant in GaN conical quantum dot with spherical cap. Philosophical Magazine, 2020, 100, 2503-2523.	1.6	13
50	Tunable excitonic transitions in strained GaAs ultra-thin quantum disk. Superlattices and Microstructures, 2017, 102, 382-390.	3.1	12
51	Tuning the binding energy of on-center donor in CdSe/ZnTe core/shell quantum dot by spatial parameters and magnetic field strength. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 96-99.	2.7	12
52	Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge. Superlattices and Microstructures, 2018, 114, 214-224.	3.1	12
53	Low Magnetic Field Effect on the Polarisability of Excitons in Spherical Quantum Dots. Physica Scripta, 2001, 64, 504-508.	2.5	11
54	Magnetic properties of the site-diluted spin-1 Ising superlattice. Physical Review B, 2001, 63, .	3.2	11

#	Article	IF	CITATIONS
55	The magnetic properties of disordered Fe–Al alloy system. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 3427-3434.	2.6	11
56	Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach. Physica B: Condensed Matter, 2015, 458, 73-84.	2.7	11
57	Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik, 2020, 207, 163883.	2.9	11
58	The site-diluted spin- Ising film. Physica A: Statistical Mechanics and Its Applications, 1999, 269, 329-343.	2.6	10
59	Magnetic Properties of a Transverse Ising Nanoparticle. Journal of Superconductivity and Novel Magnetism, 2015, 28, 885-890.	1.8	10
60	Hysteresis loops and dielectric properties of compositionally graded (Ba,Sr)TiO 3 thin films described by the transverse Ising model. Chinese Journal of Physics, 2016, 54, 533-544.	3.9	10
61	Etude de la resistivité de corps pulvérulents à base de carbone en fonction de la compression. Carbon, 1979, 17, 237-241.	10.3	9
62	Giant oscillator strengths of ionized donor bound excitons in semiconductor quantum crystallites. Solid State Communications, 1996, 100, 217-220.	1.9	9
63	Dielectric Properties and Hysteresis Loops of a Ferroelectric Nanoparticle System Described by the Transverse Ising Model. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2153-2162.	1.8	9
64	Fundamental exciton transitions in SiO2/Si/SiO2 cylindrical core/shell quantum dot. Journal of Applied Physics, 2018, 124, 144303.	2.5	9
65	Modeling the impact of temperature effect and polarization phenomenon on InGaN/GaN-Multi-quantum well solar cells. Optik, 2019, 199, 163385.	2.9	9
66	Binding energy of an exciton in a GaN/AlN nanodot: Role of size and external electric field. Physica B: Condensed Matter, 2019, 559, 23-28.	2.7	9
67	Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure. MRS Communications, 2019, 9, 663-669.	1.8	9
68	Optical Absorption of Excitons in Strained Quasi 2D GaN Quantum Dot. Physica Status Solidi (B): Basic Research, 2019, 256, 1800361.	1.5	9
69	Influence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1â^'xN Quantum Dot Solar Cells. Nanomaterials, 2021, 11, 1317.	4.1	9
70	Effect of charge carrier–phonon coupling on the energy of shallow donors in CdSe quantum dots. Physica Status Solidi (B): Basic Research, 2003, 240, 106-115.	1.5	8
71	Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3127-3133.	1.8	8
72	Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects. Chinese Journal of Physics, 2017, 55, 2224-2235.	3.9	8

#	Article	IF	CITATIONS
73	Magnetic field and dielectric environment effects on an exciton trapped by an ionized donor in a spherical quantum dot. Superlattices and Microstructures, 2017, 111, 1082-1092.	3.1	8
74	Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots. Superlattices and Microstructures, 2017, 111, 457-465.	3.1	8
75	Interplay between normal and abnormal stark shift according to the quantum dot spherical core/shell size ratio. Philosophical Magazine Letters, 2018, 98, 252-265.	1.2	8
76	Impact of heavy hole levels on the photovoltaic conversion efficiency of In Ga1â^'N/InN quantum dot intermediate band solar cells. Superlattices and Microstructures, 2019, 129, 202-211.	3.1	8
77	Role of a uniform magnetic field on the energy spectrum of a single donor in a core/shell spherical quantum dot. Chinese Journal of Physics, 2019, 57, 189-194.	3.9	8
78	Thermodynamic properties of SnO2/GaAs core/shell nanofiber. Physica A: Statistical Mechanics and Its Applications, 2020, 560, 125104.	2.6	8
79	Neutral acceptor bound excitons: Interparticle distances and validity of the pseudoâ€donor model. Physica Status Solidi (B): Basic Research, 1987, 140, K117.	1.5	7
80	Ground state energy of the negatively charged exciton Xâ^' in bidimensional semiconductors in a steady electric field. Solid State Communications, 1997, 103, 515-518.	1.9	7
81	Phase Transitions of Ferromagnetic Ising Films with Amorphous Surfaces. Physica Scripta, 1999, 59, 72-76.	2.5	7
82	Excitons in InP/InAs inhomogeneous quantum dots. Journal of Physics Condensed Matter, 2003, 15, 175-184.	1.8	7
83	Exact analytical solutions for shallow impurity states in symmetrical paraboloidal and hemiparaboloidal quantum dots. Open Physics, 2008, 6, 97-104.	1.7	7
84	On the electronic states in lens-shaped quantum dots. Physica Status Solidi (B): Basic Research, 2017, 254, 1700144.	1.5	7
85	Hysteresis loop behaviors of a decorated double-walled cubic nanotube. Physica B: Condensed Matter, 2017, 524, 137-143.	2.7	7
86	Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot. MRS Communications, 2018, 8, 527-532.	1.8	7
87	Hydrogenic donor in a CdSe/CdS quantum dot: Effect of electric field strength, nanodot shape and dielectric environment on the energy spectrum. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 29-35.	2.7	7
88	Electric Field Effects on Charged Excitons in Semiconductors. Physica Status Solidi (B): Basic Research, 1997, 201, 521-528.	1.5	6
89	The Magnetic Properties of the Spin-1 Ising System withÂtheÂEffect of the Transverse Crystal Field. Journal of Superconductivity and Novel Magnetism, 2011, 24, 571-575.	1.8	6
90	Monte Carlo Study of Long-Range Interactions of a Ferroelectric Bilayer with Antiferroelectric Interfacial Coupling. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3075-3083.	1.8	6

#	Article	IF	Citations
91	Phase diagrams of a transverse cubic nanowire with diluted surface shell. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	6
92	Recombination energy for negatively charged excitons inside type-II core/shell spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 125-130.	2.7	6
93	Neutral Bound Excitons in a Low Magnetic Field. Physica Status Solidi (B): Basic Research, 1984, 126, 329-334.	1.5	5
94	Existence of an exciton bound to an ionized donor impurity in semiconductor quantum crystallites. Solid State Communications, 1994, 90, 651-654.	1.9	5
95	Binding energy of negatively charged excitons in semiconductor quantum well with uniform electric field. Solid State Communications, 1997, 102, 579-582.	1.9	5
96	The effects of surface transition layers on the phase diagrams and the pyroelectric properties of ferroelectric thin films. Physica Status Solidi (B): Basic Research, 2009, 246, 1723-1730.	1.5	5
97	Magnetic behaviors of a transverse spin-1/2 Ising cubic nanowire with core/shell structure. Physica B: Condensed Matter, 2017, 507, 51-60.	2.7	5
98	New way for determining electron energy levels in quantum dots arrays using finite difference method. Superlattices and Microstructures, 2018, 118, 256-265.	3.1	5
99	Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk. International Journal of Modern Physics B, 2018, 32, 1750266.	2.0	5
100	Neutral Bound Excitons in a High Magnetic Field. Physica Status Solidi (B): Basic Research, 1987, 141, 559-566.	1.5	4
101	Magnetic properties of a diluted transverse spin- Ising film. Physica A: Statistical Mechanics and Its Applications, 1999, 262, 518-533.	2.6	4
102	The magnetic properties of a ferrimagnetic multilayer system with disordered interfaces. Surface Science, 2001, 482-485, 981-988.	1.9	4
103	Effect of conduction band non-parabolicity on bound polaron fundamental state in GaN/InN core shell quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 188-193.	2.7	4
104	Adjustment of Terahertz Properties Assigned to the First Lowest Transition of (D+, X) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure. Applied Sciences (Switzerland), 2021, 11, 5969.	2.5	4
105	Numerical modeling of the size effect in CdSe/ZnS and InP/ZnS-based Intermediate Band Solar Cells. Physica Scripta, 2021, 96, 035502.	2.5	4
106	Valence band structure of very narrow InGaAs/InP quantum wells. Solid State Communications, 1996, 98, 297-301.	1.9	3
107	The phase diagrams of the site-diluted spin- ising model of an alternating magnetic superlattice. Journal of Magnetism and Magnetic Materials, 2000, 210, 366-376.	2.3	3
108	The ferromagnetic spin-1 Ising superlattice in a transverse field. Physica A: Statistical Mechanics and Its Applications, 2001, 291, 399-409.	2.6	3

#	Article	IF	CITATIONS
109	Optical and magneto optical responses assigned to probable processes of formation of exciton bound to an ionized donor in quantum dot. Current Applied Physics, 2018, 18, 452-460.	2.4	3
110	Band structure of very narrow InGaAs/InP quantum wells with gradual interface effects. Superlattices and Microstructures, 1997, 22, 181-187.	3.1	2
111	Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film. Thin Solid Films, 2011, 520, 646-650.	1.8	2
112	Some characteristic behaviours of a spin-1/2 Ising nanoparticle. Journal of Physics: Conference Series, 2016, 758, 012023.	0.4	2
113	The ferroelectric properties of films with defect layers. Physica Scripta, 2011, 83, 055704.	2.5	1
114	Effects of Biaxial Crystal Field on the Magnetic Properties onÂaÂSpin-1ÂlsingÂSystem. Journal of Superconductivity and Novel Magnetism, 2011, 24, 577-584.	1.8	1
115	Attempt to determine the band parameters of graphite by a theoretical calculation. Journal De Physique, 1981, 42, 1167-1174.	1.8	1
116	Binding Energies of Neutral Bound Excitons for Intermediate to High Magnetic Fields. Physica Status Solidi (B): Basic Research, 1988, 150, 201-209.	1.5	0
117	The critical behavior of an amorphous ferromagnet spinâ^'1/2 Ising film with amorphous surfaces. Journal of Non-Crystalline Solids, 1999, 250-252, 735-739.	3.1	0
118	Surface effects in the ferromagnet spin-1/2 Ising model of an alternating magnetic superlattice. Surface Science, 2001, 482-485, 1068-1076.	1.9	0
119	The Ferromagnetic Spin-1 Ising Superlattice. Physica Scripta, 2001, 63, 416-421.	2.5	0
120	Effect of Seeding Layers on Hysteresis Loops and Phase Transition of the Ferroelectric Thin Film. Ferroelectrics, 2015, 478, 1-10.	0.6	0
121	The Magnetic Properties of Multi-surface Transverse Ferroelectric Ising Thin Films. Journal of Superconductivity and Novel Magnetism, 2015, 28, 877-883.	1.8	0
122	Neutral Bound Excitons at Intermediate to High Magnetic Fields. Springer Series in Solid-state Sciences, 1989, , 562-566.	0.3	0
123	Neutral bound excitons in a magnetic field. , 1983, , 276-280.		0