Kenneth C Keiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798377/publications.pdf Version: 2024-02-01

KENNETH C KEILED

#	Article	IF	CITATIONS
1	Ribosome collisions: New ways to initiate ribosome rescue. Current Biology, 2022, 32, R469-R472.	3.9	2
2	Druggable differences: Targeting mechanistic differences between <i>transâ€</i> translation and translation for selective antibiotic action. BioEssays, 2022, 44, .	2.5	3
3	Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nature Biomedical Engineering, 2021, 5, 467-480.	22.5	17
4	trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo. Nature Communications, 2021, 12, 1799.	12.8	20
5	Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses. BMC Microbiology, 2021, 21, 168.	3.3	1
6	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	23
7	Active Learning Spaces: Matching Science Classrooms with Pedagogy. , 2020, , 483-498.		0
8	Investigating the Structural Mechanism of the Stalled Bacterial Ribosome Bound to a Drug that Targets Trans-Translation. Biophysical Journal, 2019, 116, 573a-574a.	0.5	0
9	A Small-Molecule Inhibitor of <i>trans</i> -Translation Synergistically Interacts with Cathelicidin Antimicrobial Peptides To Impair Survival of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	14
10	Bioresponsive peptide-polysaccharide nanogels — A versatile delivery system to augment the utility of bioactive cargo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 391-400.	3.3	36
11	Alternative mechanisms of ribosome stalling rescue in the gramâ€negative bacterium Francisella tularensis. FASEB Journal, 2019, 33, 628.3.	0.5	0
12	A New Mechanism for Ribosome Rescue Can Recruit RF1 or RF2 to Nonstop Ribosomes. MBio, 2018, 9, .	4.1	28
13	Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Scientific Reports, 2017, 7, 6135.	3.3	48
14	Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister <i>Mycobacterium tuberculosis</i> Cells. ACS Infectious Diseases, 2017, 3, 634-644.	3.8	32
15	Tetrazole-Based <i>trans</i> -Translation Inhibitors Kill Bacillus anthracis Spores To Protect Host Cells. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	10
16	Teaching broader impacts of science with undergraduate research. PLoS Biology, 2017, 15, e2001318.	5.6	9
17	Inhibitors of Ribosome Rescue Arrest Growth of Francisella tularensis at All Stages of Intracellular Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 3276-3282.	3.2	18
18	Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria. PLoS Genetics, 2016, 12, e1005964.	3.5	31

KENNETH C KEILER

#	Article	IF	CITATIONS
19	Clicking on trans-translation drug targets. Frontiers in Microbiology, 2015, 6, 498.	3.5	5
20	Mechanisms of ribosome rescue in bacteria. Nature Reviews Microbiology, 2015, 13, 285-297.	28.6	172
21	Identification of Inhibitors of a Bacterial Sigma Factor Using a New High-Throughput Screening Assay. Antimicrobial Agents and Chemotherapy, 2015, 59, 193-205.	3.2	15
22	Release of Nonstop Ribosomes Is Essential. MBio, 2014, 5, e01916.	4.1	36
23	Cell-Based Assay To Identify Inhibitors of the Hfq-sRNA Regulatory Pathway. Antimicrobial Agents and Chemotherapy, 2014, 58, 5500-5509.	3.2	23
24	Resolving Nonstop Translation Complexes Is a Matter of Life or Death. Journal of Bacteriology, 2014, 196, 2123-2130.	2.2	63
25	The potential of <i>trans</i> -translation inhibitors as antibiotics. Future Microbiology, 2013, 8, 1235-1237.	2.0	9
26	Small molecule inhibitors of <i>trans</i> -translation have broad-spectrum antibiotic activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10282-10287.	7.1	73
27	tmRNA Is Essential in Shigella flexneri. PLoS ONE, 2013, 8, e57537.	2.5	29
28	Tsp Protease. , 2013, , 3605-3607.		0
29	RNA Visualization in Bacteria by Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2012, 905, 87-95.	0.9	2
30	Pharmacological Inhibition of the ClpXP Protease Increases Bacterial Susceptibility to Host Cathelicidin Antimicrobial Peptides and Cell Envelope-Active Antibiotics. Antimicrobial Agents and Chemotherapy, 2012, 56, 1854-1861.	3.2	45
31	Bifunctional transfer-messenger RNA. Biochimie, 2011, 93, 1993-1997.	2.6	24
32	Localization of the Bacterial RNA Infrastructure. Advances in Experimental Medicine and Biology, 2011, 722, 231-238.	1.6	2
33	RNA localization in bacteria. Current Opinion in Microbiology, 2011, 14, 155-159.	5.1	41
34	Beyond ribosome rescue: tmRNA and coâ€ŧranslational processes. FEBS Letters, 2010, 584, 413-419.	2.8	70
35	Protein localization and dynamics within a bacterial organelle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5599-5604.	7.1	31
36	trans-Translation. Nucleic Acids and Molecular Biology, 2010, , 383-405.	0.2	1

KENNETH C KEILER

#	Article	IF	CITATIONS
37	Correct Timing of <i>dnaA</i> Transcription and Initiation of DNA Replication Requires <i>trans</i> Translation. Journal of Bacteriology, 2009, 191, 4268-4275.	2.2	29
38	Subcellular localization of a bacterial regulatory RNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16405-16409.	7.1	73
39	Biology of <i>trans</i> -Translation. Annual Review of Microbiology, 2008, 62, 133-151.	7.3	210
40	Screen for Localized Proteins in Caulobacter crescentus. PLoS ONE, 2008, 3, e1756.	2.5	10
41	Proteomic identification of tmRNA substrates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17128-17133.	7.1	26
42	Peptide Signals Encode Protein Localization. Journal of Bacteriology, 2007, 189, 7581-7585.	2.2	7
43	Proteolytic Adaptor for Transfer-Messenger RNA-Tagged Proteins from α-Proteobacteria. Journal of Bacteriology, 2007, 189, 272-275.	2.2	27
44	Physiology of tmRNA: what gets tagged and why?. Current Opinion in Microbiology, 2007, 10, 169-175.	5.1	45
45	Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Science, 2007, 16, 1535-1542.	7.6	56
46	Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Molecular Microbiology, 2005, 57, 565-575.	2.5	61
47	tmRNA in Caulobacter crescentus Is Cell Cycle Regulated by Temporally Controlled Transcription and RNA Degradation. Journal of Bacteriology, 2003, 185, 1825-1830.	2.2	46
48	tmRNA Is Required for Correct Timing of DNA Replication in Caulobacter crescentus. Journal of Bacteriology, 2003, 185, 573-580.	2.2	87
49	Tsp and Related Tail-Specific Proteases. The Enzymes, 2002, 22, 373-386.	1.7	1
50	Conserved Promoter Motif Is Required for Cell Cycle Timing of dnaX Transcription in Caulobacter. Journal of Bacteriology, 2001, 183, 4860-4865.	2.2	17
51	tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7778-7783.	7.1	165
52	Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA. Science, 1996, 271, 990-993.	12.6	1,047
53	Sequence Determinants of C-terminal Substrate Recognition by the Tsp Protease. Journal of Biological Chemistry, 1996, 271, 2589-2593.	3.4	92
54	Câ€ŧerminal specific protein degradation: Activity and substrate specificity of the Tsp protease. Protein Science, 1995, 4, 1507-1515.	7.6	70

#	Article	IF	CITATIONS
55	Identification of Active Site Residues of the Tsp Protease. Journal of Biological Chemistry, 1995, 270, 28864-28868.	3.4	69
56	Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 295-299.	7.1	195