Kenneth C Keiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798377/publications.pdf

Version: 2024-02-01

218677 182427 3,268 56 26 51 citations h-index g-index papers 60 60 60 2507 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA. Science, 1996, 271, 990-993.	12.6	1,047
2	Biology of <i>trans</i> -Translation. Annual Review of Microbiology, 2008, 62, 133-151.	7.3	210
3	Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 295-299.	7.1	195
4	Mechanisms of ribosome rescue in bacteria. Nature Reviews Microbiology, 2015, 13, 285-297.	28.6	172
5	tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7778-7783.	7.1	165
6	Sequence Determinants of C-terminal Substrate Recognition by the Tsp Protease. Journal of Biological Chemistry, 1996, 271, 2589-2593.	3.4	92
7	tmRNA Is Required for Correct Timing of DNA Replication in Caulobacter crescentus. Journal of Bacteriology, 2003, 185, 573-580.	2.2	87
8	Subcellular localization of a bacterial regulatory RNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16405-16409.	7.1	73
9	Small molecule inhibitors of <i>trans</i> -translation have broad-spectrum antibiotic activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10282-10287.	7.1	7 3
10	Câ€ŧerminal specific protein degradation: Activity and substrate specificity of the Tsp protease. Protein Science, 1995, 4, 1507-1515.	7.6	70
11	Beyond ribosome rescue: tmRNA and coâ€translational processes. FEBS Letters, 2010, 584, 413-419.	2.8	70
12	Identification of Active Site Residues of the Tsp Protease. Journal of Biological Chemistry, 1995, 270, 28864-28868.	3.4	69
13	Resolving Nonstop Translation Complexes Is a Matter of Life or Death. Journal of Bacteriology, 2014, 196, 2123-2130.	2.2	63
14	Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Molecular Microbiology, 2005, 57, 565-575.	2.5	61
15	Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Protein Science, 2007, 16, 1535-1542.	7.6	56
16	Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Scientific Reports, 2017, 7, 6135.	3.3	48
17	tmRNA in Caulobacter crescentus Is Cell Cycle Regulated by Temporally Controlled Transcription and RNA Degradation. Journal of Bacteriology, 2003, 185, 1825-1830.	2.2	46
18	Physiology of tmRNA: what gets tagged and why?. Current Opinion in Microbiology, 2007, 10, 169-175.	5.1	45

#	Article	IF	CITATIONS
19	Pharmacological Inhibition of the ClpXP Protease Increases Bacterial Susceptibility to Host Cathelicidin Antimicrobial Peptides and Cell Envelope-Active Antibiotics. Antimicrobial Agents and Chemotherapy, 2012, 56, 1854-1861.	3.2	45
20	RNA localization in bacteria. Current Opinion in Microbiology, 2011, 14, 155-159.	5.1	41
21	Release of Nonstop Ribosomes Is Essential. MBio, 2014, 5, e01916.	4.1	36
22	Bioresponsive peptide-polysaccharide nanogels $\hat{a} \in \mathbb{R}^n$ A versatile delivery system to augment the utility of bioactive cargo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 391-400.	3.3	36
23	Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister <i>Mycobacterium tuberculosis</i> Cells. ACS Infectious Diseases, 2017, 3, 634-644.	3.8	32
24	Protein localization and dynamics within a bacterial organelle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5599-5604.	7.1	31
25	Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria. PLoS Genetics, 2016, 12, e1005964.	3.5	31
26	Correct Timing of <i>dnaA </i> Transcription and Initiation of DNA Replication Requires <i>trans </i> Translation. Journal of Bacteriology, 2009, 191, 4268-4275.	2.2	29
27	tmRNA Is Essential in Shigella flexneri. PLoS ONE, 2013, 8, e57537.	2.5	29
28	A New Mechanism for Ribosome Rescue Can Recruit RF1 or RF2 to Nonstop Ribosomes. MBio, 2018, 9, .	4.1	28
29	Proteolytic Adaptor for Transfer-Messenger RNA-Tagged Proteins from α-Proteobacteria. Journal of Bacteriology, 2007, 189, 272-275.	2.2	27
30	Proteomic identification of tmRNA substrates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17128-17133.	7.1	26
31	Bifunctional transfer-messenger RNA. Biochimie, 2011, 93, 1993-1997.	2.6	24
32	Cell-Based Assay To Identify Inhibitors of the Hfq-sRNA Regulatory Pathway. Antimicrobial Agents and Chemotherapy, 2014, 58, 5500-5509.	3.2	23
33	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	23
34	trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeae in vivo. Nature Communications, 2021, 12, 1799.	12.8	20
35	Inhibitors of Ribosome Rescue Arrest Growth of Francisella tularensis at All Stages of Intracellular Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 3276-3282.	3.2	18
36	Conserved Promoter Motif Is Required for Cell Cycle Timing of dnaX Transcription in Caulobacter. Journal of Bacteriology, 2001, 183, 4860-4865.	2.2	17

#	Article	IF	Citations
37	Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nature Biomedical Engineering, 2021, 5, 467-480.	22.5	17
38	Identification of Inhibitors of a Bacterial Sigma Factor Using a New High-Throughput Screening Assay. Antimicrobial Agents and Chemotherapy, 2015, 59, 193-205.	3.2	15
39	A Small-Molecule Inhibitor of <i>trans</i> -Translation Synergistically Interacts with Cathelicidin Antimicrobial Peptides To Impair Survival of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	14
40	Tetrazole-Based <i>trans</i> -Translation Inhibitors Kill Bacillus anthracis Spores To Protect Host Cells. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	10
41	Screen for Localized Proteins in Caulobacter crescentus. PLoS ONE, 2008, 3, e1756.	2.5	10
42	The potential of <i>trans</i> -translation inhibitors as antibiotics. Future Microbiology, 2013, 8, 1235-1237.	2.0	9
43	Teaching broader impacts of science with undergraduate research. PLoS Biology, 2017, 15, e2001318.	5.6	9
44	Peptide Signals Encode Protein Localization. Journal of Bacteriology, 2007, 189, 7581-7585.	2.2	7
45	Clicking on trans-translation drug targets. Frontiers in Microbiology, 2015, 6, 498.	3.5	5
46	Druggable differences: Targeting mechanistic differences between <i>transâ€</i> translation for selective antibiotic action. BioEssays, 2022, 44, .	2.5	3
47	Localization of the Bacterial RNA Infrastructure. Advances in Experimental Medicine and Biology, 2011, 722, 231-238.	1.6	2
48	RNA Visualization in Bacteria by Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2012, 905, 87-95.	0.9	2
49	Ribosome collisions: New ways to initiate ribosome rescue. Current Biology, 2022, 32, R469-R472.	3.9	2
50	Tsp and Related Tail-Specific Proteases. The Enzymes, 2002, 22, 373-386.	1.7	1
51	Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses. BMC Microbiology, 2021, 21, 168.	3.3	1
52	trans-Translation. Nucleic Acids and Molecular Biology, 2010, , 383-405.	0.2	1
53	Investigating the Structural Mechanism of the Stalled Bacterial Ribosome Bound to a Drug that Targets Trans-Translation. Biophysical Journal, 2019, 116, 573a-574a.	0.5	0
54	Tsp Protease. , 2013, , 3605-3607.		0

#	Article	IF	CITATIONS
55	Alternative mechanisms of ribosome stalling rescue in the gramâ€negative bacterium Francisella tularensis. FASEB Journal, 2019, 33, 628.3.	0.5	0
56	Active Learning Spaces: Matching Science Classrooms with Pedagogy. , 2020, , 483-498.		0