
## Hiroshi Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1798062/publications.pdf Version: 2024-02-01



ΗΙΡΟΟΗΙ ΟΛΟΛΚΙ

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse<br>Trophectoderm from Inner Cell Mass. Developmental Cell, 2009, 16, 398-410.     | 3.1  | 867       |
| 2  | Redefining the InÂVivo Origin of Metanephric Nephron Progenitors Enables Generation of Complex<br>Kidney Structures from Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 53-67. | 5.2  | 725       |
| 3  | Hippo pathway regulation by cell morphology and stress fibers. Development (Cambridge), 2011, 138, 3907-3914.                                                                     | 1.2  | 707       |
| 4  | Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature, 1993, 361, 543-547.                                                                     | 13.7 | 587       |
| 5  | Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mechanisms of Development, 2008, 125, 270-283.                                            | 1.7  | 418       |
| 6  | Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development<br>(Cambridge), 2010, 137, 395-403.                                              | 1.2  | 389       |
| 7  | Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO Journal, 2011, 30, 2325-2335.                                                           | 3.5  | 376       |
| 8  | Basal cell carcinomas in mice overexpressing Cli2 in skin. Nature Genetics, 2000, 24, 216-217.                                                                                    | 9.4  | 365       |
| 9  | Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos.<br>Current Biology, 2013, 23, 1181-1194.                                      | 1.8  | 352       |
| 10 | Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development (Cambridge), 2008, 135, 4059-4069.        | 1.2  | 330       |
| 11 | Homeobox gene expression correlated with the bifurcation process of limb cartilage development.<br>Nature, 1991, 353, 443-445.                                                    | 13.7 | 311       |
| 12 | HNF-3Î <sup>2</sup> as a regulator of floor plate development. Cell, 1994, 76, 103-115.                                                                                           | 13.5 | 298       |
| 13 | Cilia at the Node of Mouse Embryos Sense Fluid Flow for Left-Right Determination via Pkd2. Science, 2012, 338, 226-231.                                                           | 6.0  | 262       |
| 14 | Cthrc1 Selectively Activates the Planar Cell Polarity Pathway of Wnt Signaling by Stabilizing the<br>Wnt-Receptor Complex. Developmental Cell, 2008, 15, 23-36.                   | 3.1  | 255       |
| 15 | Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a<br>dosage-dependent manner. Development (Cambridge), 2007, 134, 2761-2769.              | 1.2  | 251       |
| 16 | Genetic analysis of zebrafishgli1andgli2reveals divergent requirements forgligenes in vertebrate<br>development. Development (Cambridge), 2003, 130, 1549-1564.                   | 1.2  | 219       |
| 17 | The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development (Cambridge), 2001, 128, 3623-3634.                | 1.2  | 212       |
| 18 | Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst.<br>Developmental Cell, 2014, 30, 410-422.                                          | 3.1  | 189       |

HIROSHI SASAKI

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the<br>Mouse Blastocyst. PLoS Genetics, 2014, 10, e1004618.                                                                                       | 1.5 | 186       |
| 20 | Redundant Roles of <i>Tead1</i> and <i>Tead2</i> in Notochord Development and the Regulation of Cell Proliferation and Survival. Molecular and Cellular Biology, 2008, 28, 3177-3189.                                                       | 1.1 | 160       |
| 21 | Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Developmental Biology, 2009, 333, 386-396.                               | 0.9 | 139       |
| 22 | Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling.<br>Development (Cambridge), 2007, 134, 525-533.                                                                                             | 1.2 | 134       |
| 23 | DNA methylation regulates long-range gene silencing of an X-linked homeobox gene cluster in a<br>lineage-specific manner. Genes and Development, 2006, 20, 3382-3394.                                                                       | 2.7 | 93        |
| 24 | Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells. Developmental Cell, 2019, 50, 139-154.e5.                                                                     | 3.1 | 92        |
| 25 | Enhancer analysis of the mouse HNFâ€3 β gene: regulatory elements for node/notochord and floor plate<br>are independent and consist of multiple sub―elements. Genes To Cells, 1996, 1, 59-72.                                               | 0.5 | 90        |
| 26 | The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development (Cambridge), 2004, 131, 2521-2532.                                                                  | 1.2 | 89        |
| 27 | Roles and regulations of Hippo signaling during preimplantation mouse development. Development<br>Growth and Differentiation, 2017, 59, 12-20.                                                                                              | 0.6 | 81        |
| 28 | A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for<br>Left-Right Symmetry Breaking. Developmental Cell, 2017, 40, 439-452.e4.                                                                   | 3.1 | 79        |
| 29 | Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes and Development, 2002, 16, 2843-2848.                                                                                                   | 2.7 | 76        |
| 30 | Mechanisms of trophectoderm fate specification in preimplantation mouse development. Development<br>Growth and Differentiation, 2010, 52, 263-273.                                                                                          | 0.6 | 72        |
| 31 | Parâ€ <scp>aPKC</scp> â€dependent and â€independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16â€cell stage mouse embryos. Development Growth and Differentiation, 2015, 57, 544-556.       | 0.6 | 68        |
| 32 | Ssdp1 regulates head morphogenesis of mouse embryos by activating the Lim1-Ldb1 complex.<br>Development (Cambridge), 2005, 132, 2535-2546.                                                                                                  | 1.2 | 62        |
| 33 | Maintenance of the Specification of the Anterior Definitive Endoderm and Forebrain Depends on the<br>Axial Mesendoderm: A Study Using HNF3β/Foxa2 Conditional Mutants. Developmental Biology, 2002, 243,<br>20-33.                          | 0.9 | 58        |
| 34 | Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Seminars in Cell and Developmental Biology, 2015, 47-48, 80-87.                                                                     | 2.3 | 58        |
| 35 | Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Scientific Reports, 2017, 7, 46135.                                                            | 1.6 | 53        |
| 36 | Short limbs, cleft palate, and delayed formation of flat proliferative chondrocytes in mice with<br>targeted disruption of a putative protein kinase gene, <i>Pkdcc</i> ( <i>AW548124</i> ). Developmental<br>Dynamics, 2009, 238, 210-222. | 0.8 | 52        |

HIROSHI SASAKI

| #  | Article                                                                                                                                                                                                                                                          | IF                | CITATIONS           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 37 | Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mechanisms of Development, 2011, 128, 90-103.                                                                                                 | 1.7               | 50                  |
| 38 | Cell competition in mouse NIH3T3 embryonic fibroblasts controlled by Tead activity and Myc. Journal of Cell Science, 2015, 128, 790-803.                                                                                                                         | 1.2               | 50                  |
| 39 | Wnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord. Mechanisms of Development, 2009, 126, 791-803.                                                                                            | 1.7               | 46                  |
| 40 | Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in<br>preimplantation mouse embryos. Proceedings of the National Academy of Sciences of the United States<br>of America, 2012, 109, E3389-90; author reply E3391-2. | 3.3               | 44                  |
| 41 | The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers, 2014, 2, e28127.                                                                                                                          | 1.6               | 44                  |
| 42 | Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor.<br>Development (Cambridge), 2005, 132, 4719-4729.                                                                                                                     | 1.2               | 43                  |
| 43 | Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Developmental Biology, 2012, 364, 138-148.                                                                                                             | 0.9               | 43                  |
| 44 | Generation of knockâ€in mice that express nuclear enhanced green fluorescent protein and<br>tamoxifenâ€inducible Cre recombinase in the notochord from <i>Foxa2</i> and <i>T</i> loci. Genesis,<br>2013, 51, 210-218.                                            | 0.8               | 37                  |
| 45 | Specific DNA binding of the two chickenDeformedfamily homeodomain proteins,Chox-1.4 andChox-a.<br>Nucleic Acids Research, 1990, 18, 1739-1747.                                                                                                                   | 6.5               | 34                  |
| 46 | Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos.<br>Mechanisms of Development, 2014, 132, 44-58.                                                                                                                       | 1.7               | 32                  |
| 47 | GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent<br>Signaling Pathway. Cell Reports, 2016, 16, 1026-1038.                                                                                                    | 2.9               | 32                  |
| 48 | Identification of essential sequence motifs in the node/notochord enhancer of Foxa2 ( Hnf3β ) gene<br>that are conserved across vertebrate species. Mechanisms of Development, 2001, 102, 57-66.                                                                 | 1.7               | 25                  |
| 49 | The nucleotide sequence of the cDNA encoding a chickenDeformedfamily homeobox gene,Chox-Z.<br>Nucleic Acids Research, 1990, 18, 184-184.                                                                                                                         | 6.5               | 18                  |
| 50 | Neural Progenitor Cells Undergoing Yap/Tead-Mediated Enhanced Self-Renewal Form Heterotopias<br>More Easily in the Diencephalon than in the Telencephalon. Neurochemical Research, 2018, 43, 180-189.                                                            | 1.6               | 17                  |
| 51 | Expression of ADP-ribosylation factor (ARF)-like protein 6 during mouse embryonic development.<br>International Journal of Developmental Biology, 2005, 49, 891-894.                                                                                             | 0.3               | 15                  |
| 52 | Developmental Timing of Synthesis and Translation of Arylsulfatase mRNA in Sea Urchin Embryo. (sea) Tj ETQqO<br>Differentiation, 1987, 29, 317-322.                                                                                                              | 0 0 rgBT /<br>0.6 | Overlock 10 T<br>12 |
| 53 | Distribution pattern of HNF-3beta proteins in developing embryos of two mammalian species, the house shrew and the mouse. Development Growth and Differentiation, 1997, 39, 667-676.                                                                             | 0.6               | 12                  |
| 54 | Cell type dependent transcription regulation by chick homeodomain proteins. Mechanisms of Development, 1992, 37, 25-36.                                                                                                                                          | 1.7               | 11                  |

HIROSHI SASAKI

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Obesity in Yap transgenic mice is associated with TAZ downregulation. Biochemical and Biophysical Research Communications, 2018, 505, 951-957.              | 1.0 | 11        |
| 56 | Cell competition controls differentiation in mouse embryos and stem cells. Current Opinion in Cell Biology, 2020, 67, 1-8.                                  | 2.6 | 6         |
| 57 | Differential Cellular Stiffness Contributes to Tissue Elongation on an Expanding Surface. Frontiers<br>in Cell and Developmental Biology, 2022, 10, 864135. | 1.8 | 3         |
| 58 | Position-Dependent Hippo Signaling Controls Cell Fates in Preimplantation Mouse Embryos. , 2014, , 41-53.                                                   |     | 1         |
| 59 | Roles of Hippo Signaling During Mouse Embryogenesis. , 2013, , 249-264.                                                                                     |     | 0         |