
Pierre Baldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1797961/publications.pdf Version: 2024-02-01

DIEDDE RAIDI

#	Article	IF	CITATIONS
1	CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nature Methods, 2012, 9, 772-773.	9.0	2,006
2	Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 2000, 16, 412-424.	1.8	1,762
3	A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics, 2001, 17, 509-519.	1.8	1,526
4	Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 1989, 2, 53-58.	3.3	960
5	Bayesian surprise attracts human attention. Vision Research, 2009, 49, 1295-1306.	0.7	850
6	SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Research, 2005, 33, W72-W76.	6.5	839
7	Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Transactions on Industrial Informatics, 2019, 15, 2446-2455.	7.2	829
8	Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function and Bioinformatics, 2005, 62, 1125-1132.	1.5	784
9	Mitochondrial mutations in cancer. Oncogene, 2006, 25, 4647-4662.	2.6	730
10	Searching for exotic particles in high-energy physics with deep learning. Nature Communications, 2014, 5, 4308.	5.8	685
11	Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function and Bioinformatics, 2002, 47, 228-235.	1.5	652
12	Reprogramming of the Circadian Clock by Nutritional Challenge. Cell, 2013, 155, 1464-1478.	13.5	579
13	An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Research, 2007, 35, D823-D828.	6.5	528
14	Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology, 2018, 155, 1069-1078.e8.	0.6	510
15	Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 1999, 15, 937-946.	1.8	422
16	A prospective analysis of the Ab response to <i>Plasmodium falciparum</i> before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6958-6963.	3.3	412
17	Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. Journal of Chemical Information and Modeling, 2013, 53, 1563-1575.	2.5	408
18	SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics, 2009, 25, 2200-2207.	1.8	400

#	Article	IF	CITATIONS
19	Hidden Markov models of biological primary sequence information Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1059-1063.	3.3	396
20	Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 547-552.	3.3	378
21	Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5541-5546.	3.3	353
22	Graph kernels for chemical informatics. Neural Networks, 2005, 18, 1093-1110.	3.3	329
23	Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework. Journal of Biological Chemistry, 2001, 276, 19937-19944.	1.6	328
24	High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 2010, 26, 2936-2943.	1.8	328
25	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	3.0	324
26	Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. American Journal of Neuroradiology, 2018, 39, 1201-1207.	1.2	323
27	SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics, 2014, 30, 2592-2597.	1.8	312
28	Partitioning Circadian Transcription by SIRT6 Leads to Segregated Control of Cellular Metabolism. Cell, 2014, 158, 659-672.	13.5	259
29	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
30	Global Gene Expression Profiling in Escherichia coli K12. Journal of Biological Chemistry, 2003, 278, 29837-29855.	1.6	249
31	A Principled Approach to Detecting Surprising Events in Video. , 0, , .		240
32	Deep architectures for protein contact map prediction. Bioinformatics, 2012, 28, 2449-2457.	1.8	240
33	PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics, 2008, 24, 1459-1460.	1.8	239
34	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	1.4	237
35	Profiling humoral immune responses to <i>P. falciparum</i> infection with protein microarrays. Proteomics, 2008, 8, 4680-4694.	1.3	236
36	Global Gene Expression Profiling in Escherichia coli K12. Journal of Biological Chemistry, 2005, 280, 15084-15096.	1.6	235

#	Article	IF	CITATIONS
37	Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks, 2010, 23, 649-666.	3.3	223
38	Prediction of coordination number and relative solvent accessibility in proteins. Proteins: Structure, Function and Bioinformatics, 2002, 47, 142-153.	1.5	222
39	Circadian clock regulates the host response to <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9897-9902.	3.3	216
40	The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nature Neuroscience, 2013, 16, 552-561.	7.1	213
41	Defining the Independence of the Liver Circadian Clock. Cell, 2019, 177, 1448-1462.e14.	13.5	213
42	The dropout learning algorithm. Artificial Intelligence, 2014, 210, 78-122.	3.9	210
43	Towards a systems view of IBS. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 592-605.	8.2	207
44	Sourcerer: mining and searching internet-scale software repositories. Data Mining and Knowledge Discovery, 2009, 18, 300-336.	2.4	196
45	Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell, 2016, 165, 896-909.	13.5	195
46	Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics, 2007, 8, 113.	1.2	192
47	Accurate Prediction of Protein Disordered Regions by Mining Protein Structure Data. Data Mining and Knowledge Discovery, 2005, 11, 213-222.	2.4	187
48	Time of Exercise Specifies the Impact on Muscle Metabolic Pathways and Systemic Energy Homeostasis. Cell Metabolism, 2019, 30, 92-110.e4.	7.2	176
49	Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet. Cell Metabolism, 2017, 26, 523-538.e5.	7.2	162
50	COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Engineering, Design and Selection, 2009, 22, 113-120.	1.0	161
51	Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 2017, 36, 1172-1181.	5.4	159
52	ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics, 2005, 21, 4133-4139.	1.8	155
53	MotifMap: integrative genome-wide maps of regulatory motif sites for model species. BMC Bioinformatics, 2011, 12, 495.	1.2	154
54	Learning to Predict Chemical Reactions. Journal of Chemical Information and Modeling, 2011, 51, 2209-2222.	2.5	148

#	Article	IF	CITATIONS
55	Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 2005, 21, i359-i368.	1.8	145
56	Jet substructure classification in high-energy physics with deep neural networks. Physical Review D, 2016, 93, .	1.6	144
57	Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Research, 2012, 40, W553-W559.	6.5	142
58	Deep learning for chemical reaction prediction. Molecular Systems Design and Engineering, 2018, 3, 442-452.	1.7	141
59	Parameterized neural networks for high-energy physics. European Physical Journal C, 2016, 76, 1.	1.4	140
60	A Genome-Wide Proteome Array Reveals a Limited Set of Immunogens in Natural Infections of Humans and White-Footed Mice with <i>Borrelia burgdorferi</i> . Infection and Immunity, 2008, 76, 3374-3389.	1.0	137
61	Sterile Protective Immunity to Malaria is Associated with a Panel of Novel P. falciparum Antigens. Molecular and Cellular Proteomics, 2011, 10, M111.007948.	2.5	134
62	Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3339-3344.	3.3	133
63	Adaptive Low Power Listening for Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2007, 6, 988-1004.	3.9	132
64	Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics, 2002, 18, S62-S70.	1.8	128
65	Population-wide analysis of differences in disease progression patterns in men and women. Nature Communications, 2019, 10, 666.	5.8	128
66	Gut microbiota directs <scp>PPAR</scp> γâ€driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports, 2016, 17, 1292-1303.	2.0	127
67	Neural Networks for Fingerprint Recognition. Neural Computation, 1993, 5, 402-418.	1.3	126
68	ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning. Journal of Chemical Information and Modeling, 2012, 52, 2526-2540.	2.5	124
69	Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems. Physical Review Letters, 2021, 126, 098302.	2.9	124
70	Global Gene Expression Profiling in Escherichia coliK12. Journal of Biological Chemistry, 2002, 277, 40309-40323.	1.6	121
71	Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nature Communications, 2018, 9, 3323.	5.8	118
72	Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching. Proteins: Structure, Function and Bioinformatics, 2005, 62, 617-629.	1.5	117

#	Article	IF	CITATIONS
73	ChemDB update full-text search and virtual chemical space. Bioinformatics, 2007, 23, 2348-2351.	1.8	117
74	Differential analysis of DNA microarray gene expression data. Molecular Microbiology, 2003, 47, 871-877.	1.2	113
75	Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nature Structural and Molecular Biology, 2013, 20, 1206-1213.	3.6	110
76	Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Reports, 2018, 25, 3299-3314.e6.	2.9	106
77	Machine Learning Methods for Protein Structure Prediction. IEEE Reviews in Biomedical Engineering, 2008, 1, 41-49.	13.1	99
78	Jet flavor classification in high-energy physics with deep neural networks. Physical Review D, 2016, 94,	1.6	99
79	MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences. Human Mutation, 2009, 30, 1-6.	1.1	98
80	A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Computers in Biology and Medicine, 2017, 84, 137-146.	3.9	96
81	DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks. Data Mining and Knowledge Discovery, 2006, 13, 1-10.	2.4	93
82	Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics, 2006, 22, 1760-1766.	1.8	93
83	OSCILLATIONS AND SYNCHRONIZATIONS IN NEURAL NETWORKS: AN EXPLORATION OF THE LABELING HYPOTHESIS. International Journal of Neural Systems, 1989, 01, 103-124.	3.2	91
84	When is Chemical Similarity Significant? The Statistical Distribution of Chemical Similarity Scores and Its Extreme Values. Journal of Chemical Information and Modeling, 2010, 50, 1205-1222.	2.5	89
85	A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval. Bioinformatics, 2010, 26, 1348-1356.	1.8	88
86	Smooth On-Line Learning Algorithms for Hidden Markov Models. Neural Computation, 1994, 6, 307-318.	1.3	87
87	Bounds and Algorithms for Fast Exact Searches of Chemical Fingerprints in Linear and Sublinear Time. Journal of Chemical Information and Modeling, 2007, 47, 302-317.	2.5	87
88	Data structures and compression algorithms for genomic sequence data. Bioinformatics, 2009, 25, 1731-1738.	1.8	87
89	From protein microarrays to diagnostic antigen discovery: a study of the pathogen <i>Francisella tularensis</i> . Bioinformatics, 2007, 23, i508-i518.	1.8	86
90	Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metabolism, 2022, 34, 329-345.e8.	7.2	86

#	Article	IF	CITATIONS
91	DNA structure in human RNA polymerase II promoters 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 281, 663-673.	2.0	81
92	Computing with Arrays of Coupled Oscillators: An Application to Preattentive Texture Discrimination. Neural Computation, 1990, 2, 458-471.	1.3	80
93	Enhanced Higgs Boson to <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>i,,</mml:mi></mml:mrow><mml:mrow><mn with Deep Learning. Physical Review Letters, 2015, 114, 111801.</mn </mml:mrow></mml:msup></mml:mrow></mml:math>	nl:m aッ + <td>nmlaɑo></td>	nm laɑ o>
94	The Stability and Complexity of Antibody Responses to the Major Surface Antigen of Plasmodium falciparum Are Associated with Age in a Malaria Endemic Area. Molecular and Cellular Proteomics, 2011, 10, M111.008326.	2.5	78
95	Sherpa: Robust hyperparameter optimization for machine learning. SoftwareX, 2020, 12, 100591.	1.2	78
96	Deep Learning in Biomedical Data Science. Annual Review of Biomedical Data Science, 2018, 1, 181-205.	2.8	76
97	TMBpro: secondary structure, Î ² -contact and tertiary structure prediction of transmembrane Î ² -barrel proteins. Bioinformatics, 2008, 24, 513-520.	1.8	75
98	Solving the Rubik's cube with deep reinforcement learning and search. Nature Machine Intelligence, 2019, 1, 356-363.	8.3	75
99	Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. ACS Nano, 2020, 14, 15336-15348.	7.3	75
100	Decorrelated jet substructure tagging using adversarial neural networks. Physical Review D, 2017, 96,	1.6	74
101	Naturally Occurring Nucleosome Positioning Signals in Human Exons and Introns. Journal of Molecular Biology, 1996, 263, 503-510.	2.0	68
102	What time is it? Deep learning approaches for circadian rhythms. Bioinformatics, 2016, 32, i8-i17.	1.8	68
103	Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows Transposable Element Diversity. PLoS ONE, 2016, 11, e0162363.	1.1	68
104	Serological Profiling of a Candida albicans Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia. PLoS Pathogens, 2010, 6, e1000827.	2.1	66
105	Neural networks, orientations of the hypercube, and algebraic threshold functions. IEEE Transactions on Information Theory, 1988, 34, 523-530.	1.5	63
106	Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval. Journal of Chemical Information and Modeling, 2007, 47, 952-964.	2.5	61
107	Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver. Journal of Biological Chemistry, 2016, 291, 2812-2828.	1.6	61
108	Modeling and optimization of UWB communication networks through a flexible cost function. IEEE Journal on Selected Areas in Communications, 2002, 20, 1733-1744.	9.7	59

#	Article	IF	CITATIONS
109	An Application of Latent Dirichlet Allocation to Analyzing Software Evolution. , 2008, , .		59
110	Discovery of Power-Laws in Chemical Space. Journal of Chemical Information and Modeling, 2008, 48, 1138-1151.	2.5	58
111	Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells. Cancer & Metabolism, 2016, 4, 9.	2.4	58
112	Beep: 3D indoor positioning using audible sound. , 0, , .		57
113	SIDEpro: A novel machine learning approach for the fast and accurate prediction of sideâ€chain conformations. Proteins: Structure, Function and Bioinformatics, 2012, 80, 142-153.	1.5	57
114	One- to Four-Dimensional Kernels for Virtual Screening and the Prediction of Physical, Chemical, and Biological Properties. Journal of Chemical Information and Modeling, 2007, 47, 965-974.	2.5	56
115	An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data. British Journal of Anaesthesia, 2019, 123, 877-886.	1.5	56
116	ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Research, 2018, 46, D509-D515.	6.5	55
117	Assessment of predictions submitted for the CASP7 domain prediction category. Proteins: Structure, Function and Bioinformatics, 2007, 69, 137-151.	1.5	51
118	No Electron Left Behind: A Rule-Based Expert System To Predict Chemical Reactions and Reaction Mechanisms. Journal of Chemical Information and Modeling, 2009, 49, 2034-2043.	2.5	51
119	Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of <i>Pseudomonas aeruginosa</i> -Produced Metabolites. ACS Applied Materials & Interfaces, 2018, 10, 12364-12373.	4.0	51
120	Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths. Bioinformatics, 2000, 16, 865-889.	1.8	50
121	The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Science Advances, 2020, 6, .	4.7	50
122	Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Science Advances, 2021, 7, eabi7828.	4.7	50
123	Influence Relevance Voting: An Accurate And Interpretable Virtual High Throughput Screening Method. Journal of Chemical Information and Modeling, 2009, 49, 756-766.	2.5	49
124	S-adenosyl- <scp>l</scp> -homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Science Advances, 2020, 6, .	4.7	49
125	Mining Eclipse Developer Contributions via Author-Topic Models. , 2007, , .		48
126	Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality. Npj Digital Medicine, 2021, 4, 8.	5.7	48

#	Article	IF	CITATIONS
127	Lossless Compression of Chemical Fingerprints Using Integer Entropy Codes Improves Storage and Retrieval. Journal of Chemical Information and Modeling, 2007, 47, 2098-2109.	2.5	45
128	SIRT6 Suppresses Cancer Stem-like Capacity in Tumors with PI3K Activation Independently of Its Deacetylase Activity. Cell Reports, 2017, 18, 1858-1868.	2.9	45
129	Improved prediction of the number of residue contacts in proteins by recurrent neural networks. Bioinformatics, 2001, 17, S234-S242.	1.8	44
130	A theory of local learning, the learning channel, and the optimality of backpropagation. Neural Networks, 2016, 83, 51-74.	3.3	44
131	Distribution patterns of over-represented k-mers in non-coding yeast DNA. Bioinformatics, 2002, 18, 513-528.	1.8	43
132	Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction. Journal of Chemical Information and Modeling, 2016, 56, 2125-2128.	2.5	43
133	Learning in the machine: Random backpropagation and the deep learning channel. Artificial Intelligence, 2018, 260, 1-35.	3.9	43
134	Identification of Immunodominant Antigens by Probing a Whole <i>Chlamydia trachomatis</i> Open Reading Frame Proteome Microarray Using Sera from Immunized Mice. Infection and Immunity, 2011, 79, 246-257.	1.0	42
135	A WNT/p21 Circuit Directed by the C-Clamp, a Sequence-Specific DNA Binding Domain in TCFs. Molecular and Cellular Biology, 2012, 32, 3648-3662.	1.1	42
136	Data structures and compression algorithms for high-throughput sequencing technologies. BMC Bioinformatics, 2010, 11, 514.	1.2	41
137	A Fortran-Keras Deep Learning Bridge for Scientific Computing. Scientific Programming, 2020, 2020, 1-13.	0.5	41
138	SourcererDB: An aggregated repository of statically analyzed and cross-linked open source Java projects. , 2009, , .		40
139	Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens. PLoS Neglected Tropical Diseases, 2010, 4, e673.	1.3	40
140	CircadiOmics: circadian omic web portal. Nucleic Acids Research, 2018, 46, W157-W162.	6.5	39
141	The capacity of feedforward neural networks. Neural Networks, 2019, 116, 288-311.	3.3	39
142	Mitochondrial Mutations in Subjects with Psychiatric Disorders. PLoS ONE, 2015, 10, e0127280.	1.1	39
143	Contrastive Learning and Neural Oscillations. Neural Computation, 1991, 3, 526-545.	1.3	38
144	Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascularization Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1029-1035.	1.9	38

#	Article	IF	CITATIONS
145	Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25250-25259.	3.3	38
146	Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. Npj Digital Medicine, 2020, 3, 58.	5.7	38
147	Speeding Up Chemical Database Searches Using a Proximity Filter Based on the Logical Exclusive OR. Journal of Chemical Information and Modeling, 2008, 48, 1367-1378.	2.5	37
148	Modeling user reputation in wikis. Statistical Analysis and Data Mining, 2010, 3, 126-139.	1.4	36
149	Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine, 2010, 28, 3014-3024.	1.7	36
150	Complex-valued autoencoders. Neural Networks, 2012, 33, 136-147.	3.3	36
151	UWB ad-hoc networks. , 0, , .		35
152	Training and Validation of Deep Neural Networks for the Prediction of 90-Day Post-Liver Transplant Mortality Using UNOS Registry Data. Transplantation Proceedings, 2020, 52, 246-258.	0.3	35
153	The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition. Nucleic Acids Research, 2014, 42, 13615-13632.	6.5	34
154	Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing, 2004, 56, 305-327.	3.5	33
155	Functional Conservation of LncRNA JPX Despite Sequence and Structural Divergence. Journal of Molecular Biology, 2020, 432, 283-300.	2.0	33
156	Classifying shoulder implants in X-ray images using deep learning. Computational and Structural Biotechnology Journal, 2020, 18, 967-972.	1.9	33
157	Hybrid Modeling, HMM/NN Architectures, and Protein Applications. Neural Computation, 1996, 8, 1541-1565.	1.3	32
158	Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nature Communications, 2017, 8, 15488.	5.8	31
159	Hippocampal gene expression patterns linked to late-life physical activity oppose age and AD-related transcriptional decline. Neurobiology of Aging, 2019, 78, 142-154.	1.5	31
160	Mining the coherence of GNOME bug reports with statistical topic models. , 2009, , .		29
161	Temporal Evolution of Generalization during Learning in Linear Networks. Neural Computation, 1991, 3, 589-603.	1.3	28
162	Functional Census of Mutation Sequence Spaces: The Example of p53 Cancer Rescue Mutants. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 114-125.	1.9	28

#	Article	IF	CITATIONS
163	Hashing Algorithms and Data Structures for Rapid Searches of Fingerprint Vectors. Journal of Chemical Information and Modeling, 2010, 50, 1358-1368.	2.5	28
164	Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress. Journal of Chemical Information and Modeling, 2011, 51, 760-776.	2.5	27
165	Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29904-29913.	3.3	27
166	Software Acoustic Modems for Short Range Mote-based Underwater Sensor Networks. , 2006, , .		25
167	Learning to play Go using recursive neural networks. Neural Networks, 2008, 21, 1392-1400.	3.3	25
168	SELECTpro: effective protein model selection using a structure-based energy function resistant to BLUNDERs. BMC Structural Biology, 2008, 8, 52.	2.3	24
169	The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework. Bioinformatics, 2015, 31, 3181-3188.	1.8	24
170	Structural basis for triplet repeat disorders: a computational analysis. Bioinformatics, 1999, 15, 918-929.	1.8	23
171	Accurate and efficient target prediction using a potency-sensitive influence-relevance voter. Journal of Cheminformatics, 2015, 7, 63.	2.8	23
172	SPLASH: Learnable activation functions for improving accuracy and adversarial robustness. Neural Networks, 2021, 140, 1-12.	3.3	23
173	Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learning and Memory, 2017, 24, 199-209.	0.5	21
174	Gap Junction Channels of Innexins and Connexins: Relations and Computational Perspectives. International Journal of Molecular Sciences, 2019, 20, 2476.	1.8	21
175	Speeding Up Chemical Searches Using the Inverted Index: The Convergence of Chemoinformatics and Text Search Methods. Journal of Chemical Information and Modeling, 2012, 52, 891-900.	2.5	20
176	Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Realâ€Geography Boundary Conditions. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002385.	1.3	20
177	Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events. Nature Communications, 2022, 13, 787.	5.8	20
178	An Intersection Inequality Sharper than the Tanimoto Triangle Inequality for Efficiently Searching Large Databases. Journal of Chemical Information and Modeling, 2009, 49, 1866-1870.	2.5	19
179	VIRALpro: a tool to identify viral capsid and tail sequences. Bioinformatics, 2016, 32, 1405-1407.	1.8	19
180	Genome Architecture Mediates Transcriptional Control of Human Myogenic Reprogramming. IScience, 2018, 6, 232-246.	1.9	19

#	Article	IF	CITATIONS
181	Improved energy reconstruction in NOvA with regression convolutional neural networks. Physical Review D, 2019, 99, .	1.6	19
182	Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARÎ ³ activation. Nature Communications, 2020, 11, 4448.	5.8	19
183	FKBP10 Regulates Protein Translation to Sustain Lung Cancer Growth. Cell Reports, 2020, 30, 3851-3863.e6.	2.9	19
184	Patterns of cilia gene dysregulations in major psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 109, 110255.	2.5	19
185	Modular DAG–RNN Architectures for Assembling Coarse Protein Structures. Journal of Computational Biology, 2006, 13, 631-650.	0.8	18
186	Learning in the machine: The symmetries of the deep learning channel. Neural Networks, 2017, 95, 110-133.	3.3	18
187	An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task. Journal of Neural Engineering, 2021, 18, 0460e3.	1.8	18
188	On the convergence of a clustering algorithm for protein-coding regions in microbial genomes. Bioinformatics, 2000, 16, 367-371.	1.8	17
189	Function and Regulation of Cph2 in Candida albicans. Eukaryotic Cell, 2015, 14, 1114-1126.	3.4	17
190	Methyl Anion Affinities of the Canonical Organic Functional Groups. Journal of Organic Chemistry, 2020, 85, 4096-4102.	1.7	17
191	Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity. Journal of Chemical Information and Modeling, 2022, 62, 2121-2132.	2.5	17
192	How pervasive are circadian oscillations?. Trends in Cell Biology, 2014, 24, 329-331.	3.6	16
193	On the relationship between deterministic and probabilistic directed Graphical models: From Bayesian networks to recursive neural networks. Neural Networks, 2005, 18, 1080-1086.	3.3	15
194	BLASTing small molecules—statistics and extreme statistics of chemical similarity scores. Bioinformatics, 2008, 24, i357-i365.	1.8	15
195	Light Entrains Diurnal Changes in Insulin Sensitivity of Skeletal Muscle via Ventromedial Hypothalamic Neurons. Cell Reports, 2019, 27, 2385-2398.e3.	2.9	15
196	Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis. Communications Biology, 2020, 3, 409.	2.0	15
197	MiRâ€29 coordinates ageâ€dependent plasticity brakes in the adult visual cortex. EMBO Reports, 2020, 21, e50431.	2.0	15
198	Call for a Public Open Database of All Chemical Reactions. Journal of Chemical Information and Modeling, 2022, 62, 2011-2014.	2.5	15

#	Article	IF	CITATIONS
199	Permutationless many-jet event reconstruction with symmetry preserving attention networks. Physical Review D, 2022, 105, .	1.6	15
200	Mitochondrial Akt Signaling Modulated Reprogramming of Somatic Cells. Scientific Reports, 2019, 9, 9919.	1.6	13
201	Machine learning of physiological waveforms and electronic health record data to predict, diagnose and treat haemodynamic instability in surgical patients: protocol for a retrospective study. BMJ Open, 2019, 9, e031988.	0.8	13
202	Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. Cells, 2021, 10, 2967.	1.8	13
203	Flexibility of the genetic code with respect to DNA structure. Bioinformatics, 2001, 17, 237-248.	1.8	12
204	A Comparative Analysis and Experimental Study on Wireless Aerial and Underwater Acoustic Communications. , 0, , .		12
205	Sparse autoregressive models for scalable generation of sparse images in particle physics. Physical Review D, 2021, 103, .	1.6	12
206	Inner and Outer Recursive Neural Networks for Chemoinformatics Applications. Journal of Chemical Information and Modeling, 2018, 58, 207-211.	2.5	11
207	Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Research, 2019, 29, 1298-1309.	2.4	11
208	Structure, self-assembly, and properties of a truncated reflectin variant. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32891-32901.	3.3	11
209	Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction. Communications Biology, 2021, 4, 783.	2.0	11
210	Largeâ€scale analysis reveals spatiotemporal circadian patterns of cilia transcriptomes in the primate brain. Journal of Neuroscience Research, 2021, 99, 2610-2624.	1.3	11
211	The central clock suffices to drive the majority of circulatory metabolic rhythms. Science Advances, 2022, 8, .	4.7	11
212	Symmetries and learning in neural network models. Physical Review Letters, 1987, 59, 1976-1978.	2.9	10
213	A machine learning strategy for protein analysis. IEEE Intelligent Systems, 2002, 17, 28-35.	4.0	10
214	Combining Deep Learning With Optical Coherence Tomography Imaging to Determine Scalp Hair and Follicle Counts. Lasers in Surgery and Medicine, 2021, 53, 171-178.	1.1	10
215	Methyl Cation Affinities of Canonical Organic Functional Groups. Journal of Organic Chemistry, 2021, 86, 3721-3729.	1.7	10
216	Modeling of Mitochondria Bioenergetics Using a Composable Chemiosmotic Energy Transduction Rate Law: Theory and Experimental Validation. PLoS ONE, 2011, 6, e14820.	1.1	9

#	Article	IF	CITATIONS
217	Polynomial Threshold Functions, Hyperplane Arrangements, and Random Tensors. SIAM Journal on Mathematics of Data Science, 2019, 1, 699-729.	1.0	9
218	Learning to identify electrons. Physical Review D, 2021, 103, .	1.6	9
219	Structural proteomics of the poxvirus family. Artificial Intelligence in Medicine, 2004, 31, 105-115.	3.8	8
220	Tree and Hashing Data Structures to Speed up Chemical Searches: Analysis and Experiments. Molecular Informatics, 2011, 30, 791-800.	1.4	8
221	Incorporating post-translational modifications and unnatural amino acids into high-throughput modeling of protein structures. Bioinformatics, 2014, 30, 1681-1689.	1.8	8
222	Deep Learning–Assisted Multiphoton Microscopy to Reduce Light Exposure and Expedite Imaging in Tissues With High and Low Light Sensitivity. Translational Vision Science and Technology, 2021, 10, 30.	1.1	8
223	SSpro/ACCpro 6: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, deep learning and structural similarity. Bioinformatics, 2022, 38, 2064-2065.	1.8	8
224	Matching protein beta-sheet partners by feedforward and recurrent neural networks. Proceedings, 2000, 8, 25-36.	0.3	8
225	Real-time reconstruction of high energy, ultrafast laser pulses using deep learning. Scientific Reports, 2022, 12, 5299.	1.6	8
226	An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Research, 2022, 50, 4329-4339.	6.5	8
227	Minimizing the overlap problem in protein NMR: a computational framework for precision amino acid labeling. Bioinformatics, 2007, 23, 2829-2835.	1.8	7
228	Editorial: Charting Chemical Space: Challenges and Opportunities for Artificial Intelligence and Machine Learning. Molecular Informatics, 2011, 30, 751-751.	1.4	7
229	Boolean autoencoders and hypercube clustering complexity. Designs, Codes, and Cryptography, 2012, 65, 383-403.	1.0	7
230	Efficient antihydrogen detection in antimatter physics by deep learning. Journal of Physics Communications, 2017, 1, 025001.	0.5	7
231	The inner and outer approaches to the design of recursive neural architectures. Data Mining and Knowledge Discovery, 2018, 32, 218-230.	2.4	7
232	A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Scientific Reports, 2020, 10, 12915.	1.6	7
233	Protein profiles: Biases and protocols. Computational and Structural Biotechnology Journal, 2020, 18, 2281-2289.	1.9	7
234	Learning in the machine: To share or not to share?. Neural Networks, 2020, 126, 235-249.	3.3	7

#	Article	IF	CITATIONS
235	Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. International Journal of Molecular Sciences, 2021, 22, 10387.	1.8	7
236	Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks. Journal of Imaging, 2022, 8, 121.	1.7	7
237	Bounds on variances of estimators for multinomial processing tree models. Journal of Mathematical Psychology, 2003, 47, 467-470.	1.0	6
238	Exploring Java software vocabulary: A search and mining perspective. , 2009, , .		6
239	Neural network gradient Hamiltonian Monte Carlo. Computational Statistics, 2019, 34, 281-299.	0.8	6
240	Deep Learning in the Natural Sciences: Applications to Physics. Lecture Notes in Computer Science, 2018, , 269-297.	1.0	5
241	Reproducible Hyperparameter Optimization. Journal of Computational and Graphical Statistics, 2022, 31, 84-99.	0.9	5
242	Learning to isolate muons. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
243	Group actions and learning for a family of automata. Journal of Computer and System Sciences, 1988, 36, 1-15.	0.9	4
244	An acoustic identification scheme for location systems. , 0, , .		4
245	Attention: Bits versus Wows. , 0, , .		4
246	Learning in the machine: Recirculation is random backpropagation. Neural Networks, 2018, 108, 479-494.	3.3	4
247	Detecting pulmonary Coccidioidomycosis with deep convolutional neural networks. Machine Learning With Applications, 2021, 5, 100040.	3.0	4
248	CircadiOmics: circadian omic web portal. Nucleic Acids Research, 2022, 50, W183-W190.	6.5	4
249	Bayesian Causality. American Statistician, 2020, 74, 249-257.	0.9	3
250	A theory of capacity and sparse neural encoding. Neural Networks, 2021, 143, 12-27.	3.3	3
251	Periodic sequence patterns in human exons. Proceedings, 1995, 3, 30-8.	0.3	3
252	Statistical analysis of array data: Dimensionality reduction, clustering, and regulatory regions. , 2002, , 73-96.		2

#	Article	IF	CITATIONS
253	How noisy and replicable are DNA microarry data?. International Journal of Bioinformatics Research and Applications, 2005, 1, 31.	0.1	2
254	A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions. Bioinformatics, 2013, 29, 1299-1307.	1.8	2
255	A Genomic Analysis Pipeline and Its Application to Pediatric Cancers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 826-839.	1.9	2
256	Age-Related Neurometabolomic Signature of Mouse Brain. ACS Chemical Neuroscience, 2021, 12, 2887-2902.	1.7	2
257	An Adaptive Reference Point Approach to Efficiently Search Large Chemical Databases. Smart Innovation, Systems and Technologies, 2014, , 63-74.	0.5	2
258	Accurate Identification of the Trabecular Meshwork under Gonioscopic View in Real Time Using Deep Learning. Ophthalmology Glaucoma, 2022, 5, 402-412.	0.9	2
259	Chemoinformatics, drug design, and systems biology. Genome Informatics, 2005, 16, 281-5.	0.4	2
260	Systems biology. , 2002, , 135-176.		1
261	Attention: Bits Versus Wows. , 0, , .		1
262	Machine Learning Challenges in Chemoinformatics and Drug Screening and Design. , 2007, , .		1
263	Fold recognition by scoring protein maps using the congruence coefficient. Bioinformatics, 2021, 37, 506-513.	1.8	1
264	Statistical analysis of array data: Inferring changes. , 2002, , 53-72.		0
265	The design, analysis, and interpretation of gene expression profiling experiments. , 2002, , 97-134.		0
266	Attention: Bits Versus Wows. , 0, , .		0
267	Exploring chemical space with computers: challenges and opportunities. , 0, , .		0
268	Capturing Java naming conventions with first-order Markov models. , 2009, , .		0
269	Reaction Explorer:Towards a Knowledge Map of Organic Chemistry To Support Dynamic Assessment and Personalized Instruction. ACS Symposium Series, 2010, , 191-209.	0.5	0
270	A scalable reference-point based algorithm to efficiently search large chemical databases. , 2010, , .		0

#	Article	IF	CITATIONS
271	On neuronal capacity. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 124012.	0.9	0
272	BIOETHICS, FICTION SCIENCE, AND THE FUTURE OF MANKIND. , 2000, , .		0
273	EXPLORING CHEMICAL SPACE WITH COMPUTERS: INFORMATICS CHALLENGES FOR AI AND MACHINE LEARNING. , 2006, , .		0
274	Transmembrane beta-barrel protein structure prediction. , 2010, , 83-102.		0
275	Learning in the Machine: Random Backpropagation and the Deep Learning Channel (Extended Abstract). , 2019, , .		0
276	Deep Learning from Four Vectors. , 2022, , 59-83.		0
277	Deep Learning from Four Vectors. , 2022, , 59-83.		0